Project acronym HPSuper
Project High-Pressure High-Temperature Superconductivity
Researcher (PI) Sven FRIEDEMANN
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Superconductors promote electrical currents without loss and are exploited for applications like magnets in medical imaging. Further applications like large scale usage in electrical power generation and transmission, however, are limited by the need to cool materials below a critical temperature Tc. Thus, novel superconductors with higher Tc are highly desirable.
High Tc has been predicted almost 50 years ago for hydrogen and hydrogen compounds but was only confirmed in 2015 with the discovery of superconductivity at a record temperature of 203K in hydrogen sulphide H3S at high pressures. This long term effort highlights that finding new superconductors remains challenging as theory is very limited in predicting specific compounds for high-temperature superconductivity. The reason for this is that a favourable combination of materials and electronic properties is needed. This project will unravel the mechanism of high-temperature superconductivity in H3S, derive design principles, and find new high-temperature superconductors.
We will measure key parameters of the superconducting state in H3S including the London penetration depth, coherence length, superconducting gap, charge carrier concentration, electron-phonon coupling, and Fermi surface topology as well as the isotope effect on these. This will be achieved through measurements of the critical field, Hall effect, quantum oscillations, and tunnelling spectroscopy.
This insight will be used to derive design principles for new superconductors with increased Tc and at lower pressures. We will work together with theory and materials science to predict, synthesise and test novel superconductors working towards hydrogen based high-temperature superconductivity at ambient pressure. We will focus on two materials classes with high hydrogen content: i) phosphanes with excellent control of complementary elements and ii) hydrogen storage materials alanates and borohydrades with light complementary elements.
Summary
Superconductors promote electrical currents without loss and are exploited for applications like magnets in medical imaging. Further applications like large scale usage in electrical power generation and transmission, however, are limited by the need to cool materials below a critical temperature Tc. Thus, novel superconductors with higher Tc are highly desirable.
High Tc has been predicted almost 50 years ago for hydrogen and hydrogen compounds but was only confirmed in 2015 with the discovery of superconductivity at a record temperature of 203K in hydrogen sulphide H3S at high pressures. This long term effort highlights that finding new superconductors remains challenging as theory is very limited in predicting specific compounds for high-temperature superconductivity. The reason for this is that a favourable combination of materials and electronic properties is needed. This project will unravel the mechanism of high-temperature superconductivity in H3S, derive design principles, and find new high-temperature superconductors.
We will measure key parameters of the superconducting state in H3S including the London penetration depth, coherence length, superconducting gap, charge carrier concentration, electron-phonon coupling, and Fermi surface topology as well as the isotope effect on these. This will be achieved through measurements of the critical field, Hall effect, quantum oscillations, and tunnelling spectroscopy.
This insight will be used to derive design principles for new superconductors with increased Tc and at lower pressures. We will work together with theory and materials science to predict, synthesise and test novel superconductors working towards hydrogen based high-temperature superconductivity at ambient pressure. We will focus on two materials classes with high hydrogen content: i) phosphanes with excellent control of complementary elements and ii) hydrogen storage materials alanates and borohydrades with light complementary elements.
Max ERC Funding
1 809 752 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym PSINFONI
Project Particle-Surface Interactions in Near Field Optics: Spin-orbit Effects of Light and Optical/Casimir Forces
Researcher (PI) Francisco José RODRÍGUEZ FORTUÑO
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary PSINFONI aims to open new avenues of research in ultrafast routing and polarization synthesis of light in nanophotonics, and in the manipulation, sorting, levitation and trapping of nanoparticles, molecules, or single atoms near novel nanomaterial surfaces. To this end, we will explore the fundamentals and applications of a range of novel nanophotonic phenomena: (i) spin-orbit interactions of light for polarization-controlled optical routing and polarization synthesis at the nanoscale; (ii) repulsive and switchable lateral optical forces on particles near engineered surfaces for optical manipulation and sorting; and (iii) Casimir repulsive and lateral forces for quantum levitation / frictionless nanomaterials. All these diverse phenomena can be studied under the single framework of particle-surface interactions in the near field, greatly diversifying the research outcomes from a single research effort. Knowledge of the full 3D electromagnetic fields in particle-surface systems will form the foundation from which to explore fundamental aspects and limitations of the above mentioned effects, opening new applications in information technologies and new nanomaterials. Proof of principle experimental demonstrations will be performed where possible.
Summary
PSINFONI aims to open new avenues of research in ultrafast routing and polarization synthesis of light in nanophotonics, and in the manipulation, sorting, levitation and trapping of nanoparticles, molecules, or single atoms near novel nanomaterial surfaces. To this end, we will explore the fundamentals and applications of a range of novel nanophotonic phenomena: (i) spin-orbit interactions of light for polarization-controlled optical routing and polarization synthesis at the nanoscale; (ii) repulsive and switchable lateral optical forces on particles near engineered surfaces for optical manipulation and sorting; and (iii) Casimir repulsive and lateral forces for quantum levitation / frictionless nanomaterials. All these diverse phenomena can be studied under the single framework of particle-surface interactions in the near field, greatly diversifying the research outcomes from a single research effort. Knowledge of the full 3D electromagnetic fields in particle-surface systems will form the foundation from which to explore fundamental aspects and limitations of the above mentioned effects, opening new applications in information technologies and new nanomaterials. Proof of principle experimental demonstrations will be performed where possible.
Max ERC Funding
1 427 361 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym QUESTDO
Project Quantum electronic states in delafossite oxides
Researcher (PI) Philip David KING
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary One of the most active challenges of modern solid state physics and chemistry is harnessing the unique and varied physical properties of transition-metal oxides. From improved electrodes for solar cells to loss-less transmission of power, these compounds hold the potential to transform our daily lives. Subtle collective quantum states underpin their diverse properties. These complicate their physical understanding but render them extremely sensitive to their local crystalline environment, offering enormous potential to tune their functional behaviour. To date, the vast majority of work has focussed on transition-metal oxides based around cubic “perovskite” building blocks. In contrast, exploiting the layered traingular network of the delafossite structure, the QUESTDO project aims to establish delafossite oxides as a completely novel class of interacting electron system with properties and potential not known in more established systems.
Its scope bridges three of the most important current themes in condensed matter, investigating and controlling the delicate interplay of (i) frustrated triangular and honeycomb lattice geometries, (ii) interacting electrons, and (iii) effects of strong spin-orbit interactions. It brings together advanced spectroscopic measurement with precise materials fabrication. Through these studies, QUESTDO promises critical new insight on the quantum many-body problem in solids, and will advance our understanding and demonstrate atomic-scale control of the physical properties of delafossites. Ultimately, it seeks to establish new design methodologies for the targeted creation of emergent and topological phases in this little-studied family of transition-metal oxides, paving the route for their further study and ultimate application.
Summary
One of the most active challenges of modern solid state physics and chemistry is harnessing the unique and varied physical properties of transition-metal oxides. From improved electrodes for solar cells to loss-less transmission of power, these compounds hold the potential to transform our daily lives. Subtle collective quantum states underpin their diverse properties. These complicate their physical understanding but render them extremely sensitive to their local crystalline environment, offering enormous potential to tune their functional behaviour. To date, the vast majority of work has focussed on transition-metal oxides based around cubic “perovskite” building blocks. In contrast, exploiting the layered traingular network of the delafossite structure, the QUESTDO project aims to establish delafossite oxides as a completely novel class of interacting electron system with properties and potential not known in more established systems.
Its scope bridges three of the most important current themes in condensed matter, investigating and controlling the delicate interplay of (i) frustrated triangular and honeycomb lattice geometries, (ii) interacting electrons, and (iii) effects of strong spin-orbit interactions. It brings together advanced spectroscopic measurement with precise materials fabrication. Through these studies, QUESTDO promises critical new insight on the quantum many-body problem in solids, and will advance our understanding and demonstrate atomic-scale control of the physical properties of delafossites. Ultimately, it seeks to establish new design methodologies for the targeted creation of emergent and topological phases in this little-studied family of transition-metal oxides, paving the route for their further study and ultimate application.
Max ERC Funding
1 999 825 €
Duration
Start date: 2017-01-01, End date: 2021-12-31