Project acronym 2DNanoSpec
Project Nanoscale Vibrational Spectroscopy of Sensitive 2D Molecular Materials
Researcher (PI) Renato ZENOBI
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Summary
I propose to investigate the nanometer scale organization of delicate 2-dimensional molecular materials using nanoscale vibrational spectroscopy. 2D structures are of great scientific and technological importance, for example as novel materials (graphene, MoS2, WS2, etc.), and in the form of biological membranes and synthetic 2D-polymers. Powerful methods for their analysis and imaging with molecular selectivity and sufficient spatial resolution, however, are lacking. Tip-enhanced Raman spectroscopy (TERS) allows label-free spectroscopic identification of molecular species, with ≈10 nm spatial resolution, and with single molecule sensitivity for strong Raman scatterers. So far, however, TERS is not being carried out in liquids, which is the natural environment for membranes, and its application to poor Raman scatterers such as components of 2D polymers, lipids, or other membrane compounds (proteins, sugars) is difficult. TERS has the potential to overcome the restrictions of other optical/spectroscopic methods to study 2D materials, namely (i) insufficient spatial resolution of diffraction-limited optical methods; (ii) the need for labelling for all methods relying on fluorescence; and (iii) the inability of some methods to work in liquids. I propose to address a number of scientific questions associated with the spatial organization, and the occurrence of defects in sensitive 2D molecular materials. The success of these studies will also rely critically on technical innovations of TERS that notably address the problem of energy dissipation. This will for the first time allow its application to study of complex, delicate 2D molecular systems without photochemical damage.
Max ERC Funding
2 311 696 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AGRISCENTS
Project Scents and sensibility in agriculture: exploiting specificity in herbivore- and pathogen-induced plant volatiles for real-time crop monitoring
Researcher (PI) Theodoor Turlings
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Summary
Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Max ERC Funding
2 498 086 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ALGILE
Project Foundations of Algebraic and Dynamic Data Management Systems
Researcher (PI) Christoph Koch
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary "Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Summary
"Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Max ERC Funding
1 480 548 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AlgoRNN
Project Recurrent Neural Networks and Related Machines That Learn Algorithms
Researcher (PI) Juergen Schmidhuber
Host Institution (HI) UNIVERSITA DELLA SVIZZERA ITALIANA
Call Details Advanced Grant (AdG), PE6, ERC-2016-ADG
Summary Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Summary
Recurrent neural networks (RNNs) are general parallel-sequential computers. Some learn their programs or weights. Our supervised Long Short-Term Memory (LSTM) RNNs were the first to win pattern recognition contests, and recently enabled best known results in speech and handwriting recognition, machine translation, etc. They are now available to billions of users through the world's most valuable public companies including Google and Apple. Nevertheless, in lots of real-world tasks RNNs do not yet live up to their full potential. Although universal in theory, in practice they fail to learn important types of algorithms. This ERC project will go far beyond today's best RNNs through novel RNN-like systems that address some of the biggest open RNN problems and hottest RNN research topics: (1) How can RNNs learn to control (through internal spotlights of attention) separate large short-memory structures such as sub-networks with fast weights, to improve performance on many natural short-term memory-intensive tasks which are currently hard to learn by RNNs, such as answering detailed questions on recently observed videos? (2) How can such RNN-like systems metalearn entire learning algorithms that outperform the original learning algorithms? (3) How to achieve efficient transfer learning from one RNN-learned set of problem-solving programs to new RNN programs solving new tasks? In other words, how can one RNN-like system actively learn to exploit algorithmic information contained in the programs running on another? We will test our systems existing benchmarks, and create new, more challenging multi-task benchmarks. This will be supported by a rather cheap, GPU-based mini-brain for implementing large RNNs.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AMSEL
Project Atomic Force Microscopy for Molecular Structure Elucidation
Researcher (PI) Leo Gross
Host Institution (HI) IBM RESEARCH GMBH
Call Details Consolidator Grant (CoG), PE4, ERC-2015-CoG
Summary Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Summary
Molecular structure elucidation is of great importance in synthetic chemistry, pharmacy, life sciences, energy and environmental sciences, and technology applications. To date structure elucidation by atomic force microscopy (AFM) has been demonstrated for a few, small and mainly planar molecules. In this project high-risk, high-impact scientific questions will be solved using structure elucidation with the AFM employing a novel tool and novel methodologies.
A combined low-temperature scanning tunneling microscope/atomic force microscope (LT-STM/AFM) with high throughput and in situ electrospray deposition method will be developed. Chemical resolution will be achieved by novel measurement techniques, in particular the usage of different and novel tip functionalizations and combination with Kelvin probe force microscopy. Elements will be identified using substructure recognition provided by a database that will be erected and by refined theory and simulations.
The developed tools and techniques will be applied to molecules of increasing fragility, complexity, size, and three-dimensionality. In particular samples that are challenging to characterize with conventional methods will be studied. Complex molecular mixtures will be investigated molecule-by-molecule taking advantage of the single-molecule sensitivity. The absolute stereochemistry of molecules will be determined, resolving molecules with multiple stereocenters. The operation of single molecular machines as nanocars and molecular gears will be investigated. Reactive intermediates generated with atomic manipulation will be characterized and their on-surface reactivity will be studied by AFM.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym AOC
Project Adversary-Oriented Computing
Researcher (PI) Rachid Guerraoui
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE6, ERC-2013-ADG
Summary "Recent technological evolutions, including the cloud, the multicore, the social and the mobiles ones, are turning computing ubiquitously distributed. Yet, building high-assurance distributed programs is notoriously challenging. One of the main reasons is that these systems usually seek to achieve several goals at the same time. In short, they need to be efficient, responding effectively in various average-case conditions, as well as reliable, behaving correctly in severe, worst-case conditions. As a consequence, they typically intermingle different strategies: each to cope with some specific condition, e.g., with or without node failures, message losses, time-outs, contention, cache misses,
over-sizing, malicious attacks, etc. The resulting programs end up hard to design, prove, verify, implement, test and debug. Not surprisingly, there are anecdotal evidences of the fragility of the most celebrated distributed systems.
The goal of this project is to contribute to building high-assurance distributed programs by introducing a new dimension for separating and isolating their concerns, as well as a new scheme for composing and reusing them in a modular manner. In short, the project will explore the inherent power and limitations of a novel paradigm, Adversary-Oriented Computing (AOC). Sub-programs, each implementing a specific strategy to cope with a given adversary, modelling a specific working condition, are designed, proved, verified, implemented, tested and debugged independently. They are then composed, possibly dynamically, as black-boxes within the same global program. The AOC project is ambitious and it seeks to fundamentally revisit the way distributed algorithms are designed and distributed systems are implemented. The gain expected in comparison with today's approaches is substantial, and I believe it will be proportional to the degree of difficulty of the distributed problem at hand."
Summary
"Recent technological evolutions, including the cloud, the multicore, the social and the mobiles ones, are turning computing ubiquitously distributed. Yet, building high-assurance distributed programs is notoriously challenging. One of the main reasons is that these systems usually seek to achieve several goals at the same time. In short, they need to be efficient, responding effectively in various average-case conditions, as well as reliable, behaving correctly in severe, worst-case conditions. As a consequence, they typically intermingle different strategies: each to cope with some specific condition, e.g., with or without node failures, message losses, time-outs, contention, cache misses,
over-sizing, malicious attacks, etc. The resulting programs end up hard to design, prove, verify, implement, test and debug. Not surprisingly, there are anecdotal evidences of the fragility of the most celebrated distributed systems.
The goal of this project is to contribute to building high-assurance distributed programs by introducing a new dimension for separating and isolating their concerns, as well as a new scheme for composing and reusing them in a modular manner. In short, the project will explore the inherent power and limitations of a novel paradigm, Adversary-Oriented Computing (AOC). Sub-programs, each implementing a specific strategy to cope with a given adversary, modelling a specific working condition, are designed, proved, verified, implemented, tested and debugged independently. They are then composed, possibly dynamically, as black-boxes within the same global program. The AOC project is ambitious and it seeks to fundamentally revisit the way distributed algorithms are designed and distributed systems are implemented. The gain expected in comparison with today's approaches is substantial, and I believe it will be proportional to the degree of difficulty of the distributed problem at hand."
Max ERC Funding
2 147 012 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym AtomicGaugeSimulator
Project Classical and Atomic Quantum Simulation of Gauge Theories in Particle and Condensed Matter Physics
Researcher (PI) Uwe-Jens Richard Christian Wiese
Host Institution (HI) UNIVERSITAET BERN
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Summary
Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Max ERC Funding
1 975 242 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Attoclock
Project Clocking fundamental attosecond electron dynamics
Researcher (PI) Ursula Keller
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary The attoclock is a powerful, new, and unconventional tool to study fundamental attosecond dynamics on an atomic scale. We established its potential by using the first attoclock to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. Building on these first proof-of-principle measurements, I propose to amplify and expand this tool concept to explore the following key questions: How fast can light liberate electrons from a single atom, a single molecule, or a solid-state system? Related are more questions: How fast can an electron tunnel through a potential barrier? How fast is a multi-photon absorption process? How fast is single-photon photoemission? Many of these questions will undoubtedly spark more questions – revealing deeper and more detailed insights on the dynamics of some of the most fundamental and relevant optoelectronic processes.
There are still many unknown and unexplored areas here. Theory has failed to offer definitive answers. Simulations based on the exact time-dependent Schrödinger equation have not been possible in most cases. Therefore one uses approximations and simpler models to capture the essential physics. Such semi-classical models potentially will help to understand attosecond energy and charge transport in larger molecular systems. Indeed the attoclock provides a unique tool to explore different semi-classical models.
For example, the question of whether electron tunneling through an energetically forbidden region takes a finite time or is instantaneous has been subject to ongoing debate for the last sixty years. The tunnelling process, charge transfer, and energy transport all play key roles in electronics, energy conversion, chemical and biological reactions, and fundamental processes important for improved information, health, and energy technologies. We believe the attoclock can help refine and resolve key models for many of these important underlying attosecond processes.
Summary
The attoclock is a powerful, new, and unconventional tool to study fundamental attosecond dynamics on an atomic scale. We established its potential by using the first attoclock to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. Building on these first proof-of-principle measurements, I propose to amplify and expand this tool concept to explore the following key questions: How fast can light liberate electrons from a single atom, a single molecule, or a solid-state system? Related are more questions: How fast can an electron tunnel through a potential barrier? How fast is a multi-photon absorption process? How fast is single-photon photoemission? Many of these questions will undoubtedly spark more questions – revealing deeper and more detailed insights on the dynamics of some of the most fundamental and relevant optoelectronic processes.
There are still many unknown and unexplored areas here. Theory has failed to offer definitive answers. Simulations based on the exact time-dependent Schrödinger equation have not been possible in most cases. Therefore one uses approximations and simpler models to capture the essential physics. Such semi-classical models potentially will help to understand attosecond energy and charge transport in larger molecular systems. Indeed the attoclock provides a unique tool to explore different semi-classical models.
For example, the question of whether electron tunneling through an energetically forbidden region takes a finite time or is instantaneous has been subject to ongoing debate for the last sixty years. The tunnelling process, charge transfer, and energy transport all play key roles in electronics, energy conversion, chemical and biological reactions, and fundamental processes important for improved information, health, and energy technologies. We believe the attoclock can help refine and resolve key models for many of these important underlying attosecond processes.
Max ERC Funding
2 319 796 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ATTOLIQ
Project Attosecond X-ray spectroscopy of liquids
Researcher (PI) Hans Jakob WÖRNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Summary
Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Max ERC Funding
2 750 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31