Project acronym AdaptiveResponse
Project The evolution of adaptive response mechanisms
Researcher (PI) Franz WEISSING
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Summary
In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym AfricanWomen
Project Women in Africa
Researcher (PI) catherine GUIRKINGER
Host Institution (HI) UNIVERSITE DE NAMUR ASBL
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Summary
Rates of domestic violence and the relative risk of premature death for women are higher in sub-Saharan Africa than in any other region. Yet we know remarkably little about the economic forces, incentives and constraints that drive discrimination against women in this region, making it hard to identify policy levers to address the problem. This project will help fill this gap.
I will investigate gender discrimination from two complementary perspectives. First, through the lens of economic history, I will investigate the forces driving trends in women’s relative well-being since slavery. To quantify the evolution of well-being of sub-Saharan women relative to men, I will use three types of historical data: anthropometric indicators (relative height), vital statistics (to compute numbers of missing women), and outcomes of formal and informal family law disputes. I will then investigate how major economic developments and changes in family laws differentially affected women’s welfare across ethnic groups with different norms on women’s roles and rights.
Second, using intra-household economic models, I will provide new insights into domestic violence and gender bias in access to crucial resources in present-day Africa. I will develop a new household model that incorporates gender identity and endogenous outside options to explore the relationship between women’s empowerment and the use of violence. Using the notion of strategic delegation, I will propose a new rationale for the separation of budgets often observed in African households and generate predictions of how improvements in women’s outside options affect welfare. Finally, with first hand data, I will investigate intra-household differences in nutrition and work effort in times of food shortage from the points of view of efficiency and equity. I will use activity trackers as an innovative means of collecting high quality data on work effort and thus overcome data limitations restricting the existing literature
Max ERC Funding
1 499 313 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym Amitochondriates
Project Life without mitochondrion
Researcher (PI) Vladimir HAMPL
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Summary
Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Max ERC Funding
1 935 500 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ASTHMACRYSTALCLEAR
Project Role of protein crystallization in type 2 immunity and asthma
Researcher (PI) Bart LAMBRECHT
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS6, ERC-2017-ADG
Summary Spontaneous protein crystallization is a rare event in biology. Eosinophilic inflammation such as seen in the airways in asthma, chronic rhinosinusitis and helminth infection is however accompanied by accumulation of large amounts of extracellular Charcot-Leyden crystals. These are made of Galectin-10, a protein of unknown function produced by eosinophils, hallmark cells of type 2 immunity. In mice, eosinophilic inflammation is also accompanied by protein crystal build up, composed of the chitinase-like proteins Ym1 and Ym2, produced by alternatively activated macrophages. Here we challenge the current view that these crystals are just markers of eosinophil demise or macrophages activation. We hypothesize that protein crystallization serves an active role in immunoregulation of type 2 immunity. On the one hand, crystallization might turn a harmless protein into a danger signal. On the other hand, crystallization might sequester and eliminate the physiological function of soluble Galectin-10 and Ym1, or prolong it via slow release elution. For full understanding, we therefore need to understand the function of the proteins in a soluble and crystalline state. Our program at the frontline of immunology, molecular structural biology and clinical science combines innovative tool creation and integrative research to investigate the structure, function, and physiology of galectin-10 and related protein crystals. We chose to study asthma as the crystallizing proteins are abundantly present in human and murine disease. There is still a large medical need for novel therapies that could benefit patients with chronic steroid-resistant disease, and are alternatives to eosinophil-depleting antibodies whose long term effects are unknown.
Summary
Spontaneous protein crystallization is a rare event in biology. Eosinophilic inflammation such as seen in the airways in asthma, chronic rhinosinusitis and helminth infection is however accompanied by accumulation of large amounts of extracellular Charcot-Leyden crystals. These are made of Galectin-10, a protein of unknown function produced by eosinophils, hallmark cells of type 2 immunity. In mice, eosinophilic inflammation is also accompanied by protein crystal build up, composed of the chitinase-like proteins Ym1 and Ym2, produced by alternatively activated macrophages. Here we challenge the current view that these crystals are just markers of eosinophil demise or macrophages activation. We hypothesize that protein crystallization serves an active role in immunoregulation of type 2 immunity. On the one hand, crystallization might turn a harmless protein into a danger signal. On the other hand, crystallization might sequester and eliminate the physiological function of soluble Galectin-10 and Ym1, or prolong it via slow release elution. For full understanding, we therefore need to understand the function of the proteins in a soluble and crystalline state. Our program at the frontline of immunology, molecular structural biology and clinical science combines innovative tool creation and integrative research to investigate the structure, function, and physiology of galectin-10 and related protein crystals. We chose to study asthma as the crystallizing proteins are abundantly present in human and murine disease. There is still a large medical need for novel therapies that could benefit patients with chronic steroid-resistant disease, and are alternatives to eosinophil-depleting antibodies whose long term effects are unknown.
Max ERC Funding
2 499 846 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym ATTACK
Project Pressured to Attack: How Carrying-Capacity Stress Creates and Shapes Intergroup Conflict
Researcher (PI) Carsten DE DREU
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Summary
Throughout history, what has been causing tremendous suffering is groups of people fighting each other. While behavioral science research has advanced our understanding of such intergroup conflict, it has exclusively focused on micro-level processes within and between groups at conflict. Disciplines that employ a more historical perspective like climate studies or political geography report that macro-level pressures due to changes in climate or economic scarcity can go along with social unrest and wars. How do these macro-level pressures relate to micro-level processes? Do they both occur independently, or do macro-level pressures trigger micro-level processes that cause intergroup conflict? And if so, which micro-level processes are triggered, and how?
With unavoidable signs of climate change and increasing resource scarcities, answers to these questions are urgently needed. Here I propose carrying-capacity stress (CCS) as the missing link between macro-level pressures and micro-level processes. A group experiences CCS when its resources do not suffice to maintain its functionality. CCS is a function of macro-level pressures and creates intergroup conflict because it impacts micro-level motivation to contribute to one’s group’s fighting capacity and shapes the coordination of individual contributions to out-group aggression through emergent norms, communication and leadership.
To test these propositions I develop a parametric model of CCS that is amenable to measurement and experimentation, and use techniques used in my work on conflict and cooperation: Meta-analyses and time-series analysis of macro-level historical data; experiments on intergroup conflict; and measurement of neuro-hormonal correlates of cooperation and conflict. In combination, this project provides novel multi-level conflict theory that integrates macro-level discoveries in climate research and political geography with micro-level processes uncovered in the biobehavioral sciences
Max ERC Funding
2 490 383 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BEHAVFRICTIONS
Project Behavioral Implications of Information-Processing Frictions
Researcher (PI) Jakub STEINER
Host Institution (HI) NARODOHOSPODARSKY USTAV AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Consolidator Grant (CoG), SH1, ERC-2017-COG
Summary BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Summary
BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Max ERC Funding
1 321 488 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BioNanoPattern
Project Protein nano-patterning using DNA nanotechnology; control of surface-based immune system activation
Researcher (PI) Thomas Harry SHARP
Host Institution (HI) ACADEMISCH ZIEKENHUIS LEIDEN
Call Details Starting Grant (StG), LS9, ERC-2017-STG
Summary Protein nanopatterning concerns the geometric arrangement of individual proteins with nanometre accuracy. It is becoming apparent that protein nanopatterns are essential for cellular function, and have roles in cell signalling and protection, phagocytosis and stem cell differentiation. Recent research indicates that our immune system is activated by nanopatterned antibody platforms, which initiate the classical Complement pathway by binding to the first component of Complement, the C1 complex. DNA nanotechnology can be used to form self-assembled nanoscale structures, which are ideal for use as templates to pattern proteins with specific geometries and nanometre accuracy. I propose to use DNA to nanopattern antigens and agonistic aptamers with defined geometry to study and control Complement pathway activation by the C1 complex.
To develop and demonstrate the potential use of DNA to nanopattern proteins, the first aim of this proposal is to design DNA nanotemplates suitable for patterning antibody-binding sites. Antibodies and C1 will bind with specific geometry, and the relationship between antibody geometry and Complement activation will be assessed using novel liposome assays. Using DNA to mimic antigenic surfaces will enable high-resolution structure determination of DNA-antibody-C1 complexes, both in solution and on lipid bilayer surfaces, using phase plate cryo-electron microscopy to elucidate the structure-activation relationship of C1.
The second aim of this proposal is to evolve agonistic aptamers that directly bind to and activate C1, and incorporate these into DNA nanotemplates. These nanopatterned aptamers will enable further study of C1 activation, and allow direct targeting of Complement activation to specific cells within a population of cell types to demonstrate targeted cell killing. This may open up new and highly efficient ways to activate our immune system in vivo, with potential for targeted anti-tumour immunotherapies.
Summary
Protein nanopatterning concerns the geometric arrangement of individual proteins with nanometre accuracy. It is becoming apparent that protein nanopatterns are essential for cellular function, and have roles in cell signalling and protection, phagocytosis and stem cell differentiation. Recent research indicates that our immune system is activated by nanopatterned antibody platforms, which initiate the classical Complement pathway by binding to the first component of Complement, the C1 complex. DNA nanotechnology can be used to form self-assembled nanoscale structures, which are ideal for use as templates to pattern proteins with specific geometries and nanometre accuracy. I propose to use DNA to nanopattern antigens and agonistic aptamers with defined geometry to study and control Complement pathway activation by the C1 complex.
To develop and demonstrate the potential use of DNA to nanopattern proteins, the first aim of this proposal is to design DNA nanotemplates suitable for patterning antibody-binding sites. Antibodies and C1 will bind with specific geometry, and the relationship between antibody geometry and Complement activation will be assessed using novel liposome assays. Using DNA to mimic antigenic surfaces will enable high-resolution structure determination of DNA-antibody-C1 complexes, both in solution and on lipid bilayer surfaces, using phase plate cryo-electron microscopy to elucidate the structure-activation relationship of C1.
The second aim of this proposal is to evolve agonistic aptamers that directly bind to and activate C1, and incorporate these into DNA nanotemplates. These nanopatterned aptamers will enable further study of C1 activation, and allow direct targeting of Complement activation to specific cells within a population of cell types to demonstrate targeted cell killing. This may open up new and highly efficient ways to activate our immune system in vivo, with potential for targeted anti-tumour immunotherapies.
Max ERC Funding
1 499 850 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BLOCKCHAINSOCIETY
Project The Disrupted Society: mapping the societal effects of blockchain technology diffusion
Researcher (PI) Balazs BODO
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary Recent advances in cryptography yielded the blockchain technology, which enables a radically new and decentralized method to maintain authoritative records, without the need of trusted intermediaries. Bitcoin, a cryptocurrency blockchain application has already demonstrated that it is possible to operate a purely cryptography-based, global, distributed, decentralized, anonymous financial network, independent from central and commercial banks, regulators and the state.
The same technology is now being applied to other social domains (e.g. public registries of ownership and deeds, voting systems, the internet domain name registry). But research on the societal impact of blockchain innovation is scant, and we cannot properly assess its risks and promises. In addition, crucial knowledge is missing on how blockchain technologies can and should be regulated by law.
The BlockchainSociety project focuses on three research questions. (1) What internal factors contribute to the success of a blockchain application? (2) How does society adopt blockchain? (3) How to regulate blockchain? It breaks new ground as it (1) maps the most important blockchain projects, their governance, and assesses their disruptive potential; (2) documents and analyses the social diffusion of the technology, and builds scenarios about the potential impact of blockchain diffusion; and (3) it creates an inventory of emerging policy responses, compares and assesses policy tools in terms of efficiency and impact. The project will (1) build the conceptual and methodological bridges between information law, the study of the self-governance of technological systems via Science and Technology Studies, and the study of collective control efforts of complex socio-technological assemblages via Internet Governance studies; (2) address the most pressing blockchain-specific regulatory challenges via the analysis of emerging policies, and the development of new proposals.
Summary
Recent advances in cryptography yielded the blockchain technology, which enables a radically new and decentralized method to maintain authoritative records, without the need of trusted intermediaries. Bitcoin, a cryptocurrency blockchain application has already demonstrated that it is possible to operate a purely cryptography-based, global, distributed, decentralized, anonymous financial network, independent from central and commercial banks, regulators and the state.
The same technology is now being applied to other social domains (e.g. public registries of ownership and deeds, voting systems, the internet domain name registry). But research on the societal impact of blockchain innovation is scant, and we cannot properly assess its risks and promises. In addition, crucial knowledge is missing on how blockchain technologies can and should be regulated by law.
The BlockchainSociety project focuses on three research questions. (1) What internal factors contribute to the success of a blockchain application? (2) How does society adopt blockchain? (3) How to regulate blockchain? It breaks new ground as it (1) maps the most important blockchain projects, their governance, and assesses their disruptive potential; (2) documents and analyses the social diffusion of the technology, and builds scenarios about the potential impact of blockchain diffusion; and (3) it creates an inventory of emerging policy responses, compares and assesses policy tools in terms of efficiency and impact. The project will (1) build the conceptual and methodological bridges between information law, the study of the self-governance of technological systems via Science and Technology Studies, and the study of collective control efforts of complex socio-technological assemblages via Internet Governance studies; (2) address the most pressing blockchain-specific regulatory challenges via the analysis of emerging policies, and the development of new proposals.
Max ERC Funding
1 499 631 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BSP
Project Belief Systems Project
Researcher (PI) Mark BRANDT
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT BRABANT
Call Details Starting Grant (StG), SH3, ERC-2017-STG
Summary Belief systems research is vital for understanding democratic politics, extremism, and political decision-making. What is the basic structure of belief systems? Clear answers to this fundamental question are not forthcoming. This is due to flaws in the conceptualization of belief systems. The state-of-the-art treats a belief system as a theoretical latent variable that causes people’s responses on attitudes and values relevant to the belief system. This approach cannot assess a belief system because it cannot assess the network of connections between the beliefs–attitudes and values–that make up the system; it collapses across them and the interrelationships are lost.
The Belief Systems Project conceptualizations belief systems as systems of interconnecting attitudes and values. I conceptualize attitudes and values as interactive nodes in a network that are analysed with network analyses. With these conceptual and empirical tools, I can understand the structure and dynamics of the belief system and will be able to avoid theoretical pitfalls common in belief system assessments. This project will move belief systems research beyond the state-of-the-art in four ways by:
1. Mapping the structure of systems of attitudes and values, something that is not possible using current methods.
2. Answering classic questions about central concepts and clustering of belief systems.
3. Modeling within-person belief systems and their variations, so that I can make accurate predictions about partisan motivated reasoning.
4. Testing how external and internal pressures (e.g., feelings of threat) change the underlying structure and dynamics of belief systems.
Using survey data from around the world, longitudinal panel studies, intensive longitudinal designs, experiments, and text analyses, I will triangulate on the structure of political belief systems over time, between countries, and within individuals.
Summary
Belief systems research is vital for understanding democratic politics, extremism, and political decision-making. What is the basic structure of belief systems? Clear answers to this fundamental question are not forthcoming. This is due to flaws in the conceptualization of belief systems. The state-of-the-art treats a belief system as a theoretical latent variable that causes people’s responses on attitudes and values relevant to the belief system. This approach cannot assess a belief system because it cannot assess the network of connections between the beliefs–attitudes and values–that make up the system; it collapses across them and the interrelationships are lost.
The Belief Systems Project conceptualizations belief systems as systems of interconnecting attitudes and values. I conceptualize attitudes and values as interactive nodes in a network that are analysed with network analyses. With these conceptual and empirical tools, I can understand the structure and dynamics of the belief system and will be able to avoid theoretical pitfalls common in belief system assessments. This project will move belief systems research beyond the state-of-the-art in four ways by:
1. Mapping the structure of systems of attitudes and values, something that is not possible using current methods.
2. Answering classic questions about central concepts and clustering of belief systems.
3. Modeling within-person belief systems and their variations, so that I can make accurate predictions about partisan motivated reasoning.
4. Testing how external and internal pressures (e.g., feelings of threat) change the underlying structure and dynamics of belief systems.
Using survey data from around the world, longitudinal panel studies, intensive longitudinal designs, experiments, and text analyses, I will triangulate on the structure of political belief systems over time, between countries, and within individuals.
Max ERC Funding
1 496 944 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BURSTREG
Project Single-molecule visualization of transcription dynamics to understand regulatory mechanisms of transcriptional bursting and its effects on cellular fitness
Researcher (PI) Tineke LENSTRA
Host Institution (HI) STICHTING HET NEDERLANDS KANKER INSTITUUT-ANTONI VAN LEEUWENHOEK ZIEKENHUIS
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary Transcription in single cells is a stochastic process that arises from the random collision of molecules, resulting in heterogeneity in gene expression in cell populations. This heterogeneity in gene expression influences cell fate decisions and disease progression. Interestingly, gene expression variability is not the same for every gene: noise can vary by several orders of magnitude across transcriptomes. The reason for this transcript-specific behavior is that genes are not transcribed in a continuous fashion, but can show transcriptional bursting, with periods of gene activity followed by periods of inactivity. The noisiness of a gene can be tuned by changing the duration and the rate of switching between periods of activity and inactivity. Even though transcriptional bursting is conserved from bacteria to yeast to human cells, the origin and regulators of bursting remain largely unknown. Here, I will use cutting-edge single-molecule RNA imaging techniques to directly observe and measure transcriptional bursting in living yeast cells. First, bursting properties will be quantified at different endogenous and mutated genes to evaluate the contribution of cis-regulatory promoter elements on bursting. Second, the role of trans-regulatory complexes will be characterized by dynamic depletion or gene-specific targeting of transcription regulatory proteins and observing changes in RNA synthesis in real-time. Third, I will develop a new technology to visualize the binding dynamics of single transcription factor molecules at the transcription site, so that the stability of upstream regulatory factors and the RNA output can directly be compared in the same cell. Finally, I will examine the phenotypic effect of different bursting patterns on organismal fitness. Overall, these approaches will reveal how bursting is regulated at the molecular level and how different bursting patterns affect the heterogeneity and fitness of the organism.
Summary
Transcription in single cells is a stochastic process that arises from the random collision of molecules, resulting in heterogeneity in gene expression in cell populations. This heterogeneity in gene expression influences cell fate decisions and disease progression. Interestingly, gene expression variability is not the same for every gene: noise can vary by several orders of magnitude across transcriptomes. The reason for this transcript-specific behavior is that genes are not transcribed in a continuous fashion, but can show transcriptional bursting, with periods of gene activity followed by periods of inactivity. The noisiness of a gene can be tuned by changing the duration and the rate of switching between periods of activity and inactivity. Even though transcriptional bursting is conserved from bacteria to yeast to human cells, the origin and regulators of bursting remain largely unknown. Here, I will use cutting-edge single-molecule RNA imaging techniques to directly observe and measure transcriptional bursting in living yeast cells. First, bursting properties will be quantified at different endogenous and mutated genes to evaluate the contribution of cis-regulatory promoter elements on bursting. Second, the role of trans-regulatory complexes will be characterized by dynamic depletion or gene-specific targeting of transcription regulatory proteins and observing changes in RNA synthesis in real-time. Third, I will develop a new technology to visualize the binding dynamics of single transcription factor molecules at the transcription site, so that the stability of upstream regulatory factors and the RNA output can directly be compared in the same cell. Finally, I will examine the phenotypic effect of different bursting patterns on organismal fitness. Overall, these approaches will reveal how bursting is regulated at the molecular level and how different bursting patterns affect the heterogeneity and fitness of the organism.
Max ERC Funding
1 950 775 €
Duration
Start date: 2018-01-01, End date: 2022-12-31