Project acronym 4C
Project 4C technology: uncovering the multi-dimensional structure of the genome
Researcher (PI) Wouter Leonard De Laat
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Summary
The architecture of DNA in the cell nucleus is an emerging epigenetic key contributor to genome function. We recently developed 4C technology, a high-throughput technique that combines state-of-the-art 3C technology with tailored micro-arrays to uniquely allow for an unbiased genome-wide search for DNA loci that interact in the nuclear space. Based on 4C technology, we were the first to provide a comprehensive overview of long-range DNA contacts of selected loci. The data showed that active and inactive chromatin domains contact many distinct regions within and between chromosomes and genes switch long-range DNA contacts in relation to their expression status. 4C technology not only allows investigating the three-dimensional structure of DNA in the nucleus, it also accurately reconstructs at least 10 megabases of the one-dimensional chromosome sequence map around the target sequence. Changes in this physical map as a result of genomic rearrangements are therefore identified by 4C technology. We recently demonstrated that 4C detects deletions, balanced inversions and translocations in patient samples at a resolution (~7kb) that allowed immediate sequencing of the breakpoints. Excitingly, 4C technology therefore offers the first high-resolution genomic approach that can identify both balanced and unbalanced genomic rearrangements. 4C is expected to become an important tool in clinical diagnosis and prognosis. Key objectives of this proposal are: 1. Explore the functional significance of DNA folding in the nucleus by systematically applying 4C technology to differentially expressed gene loci. 2. Adapt 4C technology such that it allows for massive parallel analysis of DNA interactions between regulatory elements and gene promoters. This method would greatly facilitate the identification of functionally relevant DNA elements in the genome. 3. Develop 4C technology into a clinical diagnostic tool for the accurate detection of balanced and unbalanced rearrangements.
Max ERC Funding
1 225 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym ABCTRANSPORT
Project Minimalist multipurpose ATP-binding cassette transporters
Researcher (PI) Dirk Jan Slotboom
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Summary
Many Gram-positive (pathogenic) bacteria are dependent on the uptake of vitamins from the environment or from the infected host. We have recently discovered the long-elusive family of membrane protein complexes catalyzing such transport. The vitamin transporters have an unprecedented modular architecture consisting of a single multipurpose energizing module (the Energy Coupling Factor, ECF) and multiple exchangeable membrane proteins responsible for substrate recognition (S-components). The S-components have characteristics of ion-gradient driven transporters (secondary active transporters), whereas the energizing modules are related to ATP-binding cassette (ABC) transporters (primary active transporters).
The aim of the proposal is threefold: First, we will address the question how properties of primary and secondary transporters are combined in ECF transporters to obtain a novel transport mechanism. Second, we will study the fundamental and unresolved question how protein-protein recognition takes place in the hydrophobic environment of the lipid bilayer. The modular nature of the ECF proteins offers a natural system to study the driving forces used for membrane protein interaction. Third, we will assess whether the ECF transport systems could become targets for antibacterial drugs. ECF transporters are found exclusively in prokaryotes, and their activity is often essential for viability of Gram-positive pathogens. Thus they could turn out to be an Achilles’ heel for the organisms.
Structural and mechanistic studies (X-ray crystallography, microscopy, spectroscopy and biochemistry) will reveal how the different transport modes are combined in a single protein complex, how transport is energized and catalyzed, and how protein-protein recognition takes place. Microbiological screens will be developed to search for compounds that inhibit prokaryote-specific steps of the mechanism of ECF transporters.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym ABCvolume
Project The ABC of Cell Volume Regulation
Researcher (PI) Berend Poolman
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), LS1, ERC-2014-ADG
Summary Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Summary
Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.
My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.
I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.
The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.
Max ERC Funding
2 247 231 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ACTIVATION OF XCI
Project Molecular mechanisms controlling X chromosome inactivation
Researcher (PI) Joost Henk Gribnau
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Summary
In mammals, gene dosage of X-chromosomal genes is equalized between sexes by random inactivation of either one of the two X chromosomes in female cells. In the initial phase of X chromosome inactivation (XCI), a counting and initiation process determines the number of X chromosomes per nucleus, and elects the future inactive X chromosome (Xi). Xist is an X-encoded gene that plays a crucial role in the XCI process. At the start of XCI Xist expression is up-regulated and Xist RNA accumulates on the future Xi thereby initiating silencing in cis. Recent work performed in my laboratory indicates that the counting and initiation process is directed by a stochastic mechanism, in which each X chromosome has an independent probability to be inactivated. We also found that this probability is determined by the X:ploïdy ratio. These results indicated the presence of at least one X-linked activator of XCI. With a BAC screen we recently identified X-encoded RNF12 to be a dose-dependent activator of XCI. Expression of RNF12 correlates with Xist expression, and a heterozygous deletion of Rnf12 results in a marked loss of XCI in female cells. The presence of a small proportion of cells that still initiate XCI, in Rnf12+/- cells, also indicated that more XCI-activators are involved in XCI. Here, we propose to investigate the molecular mechanism by which RNF12 activates XCI in mouse and human, and to search for additional XCI-activators. We will also attempt to establish the role of different inhibitors of XCI, including CTCF and the pluripotency factors OCT4, SOX2 and NANOG. We anticipate that these studies will significantly advance our understanding of XCI mechanisms, which is highly relevant for a better insight in the manifestation of X-linked diseases that are affected by XCI.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym AdaptiveResponse
Project The evolution of adaptive response mechanisms
Researcher (PI) Franz WEISSING
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), LS8, ERC-2017-ADG
Summary In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Summary
In an era of rapid climate change there is a pressing need to understand whether and how organisms are able to adapt to novel environments. Such understanding is hampered by a major divide in the life sciences. Disciplines like systems biology or neurobiology make rapid progress in unravelling the mechanisms underlying the responses of organisms to their environment, but this knowledge is insufficiently integrated in eco-evolutionary theory. Current eco-evolutionary models focus on the response patterns themselves, largely neglecting the structures and mechanisms producing these patterns. Here I propose a new, mechanism-oriented framework that views the architecture of adaptation, rather than the resulting responses, as the primary target of natural selection. I am convinced that this change in perspective will yield fundamentally new insights, necessitating the re-evaluation of many seemingly well-established eco-evolutionary principles.
My aim is to develop a comprehensive theory of the eco-evolutionary causes and consequences of the architecture underlying adaptive responses. In three parallel lines of investigation, I will study how architecture is shaped by selection, how evolved response strategies reflect the underlying architecture, and how these responses affect the eco-evolutionary dynamics and the capacity to adapt to novel conditions. All three lines have the potential of making ground-breaking contributions to eco-evolutionary theory, including: the specification of evolutionary tipping points; resolving the puzzle that real organisms evolve much faster than predicted by current theory; a new and general explanation for the evolutionary emergence of individual variation; and a framework for studying the evolution of learning and other general-purpose mechanisms. By making use of concepts from information theory and artificial intelligence, the project will also introduce various methodological innovations.
Max ERC Funding
2 500 000 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ADDICTION
Project Beyond the Genetics of Addiction
Researcher (PI) Jacqueline Mignon Vink
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Summary
My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Max ERC Funding
1 491 964 €
Duration
Start date: 2011-12-01, End date: 2017-05-31
Project acronym AdLibYeast
Project Synthetic platforms for ad libitum remodelling of yeast central metabolism
Researcher (PI) Pascale Andrée Simone Lapujade Daran
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Consolidator Grant (CoG), LS9, ERC-2014-CoG
Summary Replacement of petrochemistry by bio-based processes is key to sustainable development and requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks. However, aeons of evolution have optimized these networks for fitness in nature rather than for industrial performance. As a result, central metabolic networks are complex and encoded by mosaic microbial genomes in which genes, irrespective of their function, are scattered over the genome and chromosomes. This absence of a modular organization tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. To conquer this limitation, I introduce the concept of ‘pathway swapping’, which will enable experimenters to remodel the core machinery of microbes at will.
Using the yeast Saccharomyces cerevisiae, an industrial biotechnology work horse and model eukaryotic cell, I propose to design and construct a microbial chassis in which all genes encoding enzymes in central carbon metabolism are relocated to a specialized synthetic chromosome, from which they can be easily swapped by any – homologous or heterologous – synthetic pathway. This challenging and innovative project paves the way for a modular approach to engineering of central metabolism.
Beyond providing a ground-breaking enabling technology, the ultimate goal of the pathway swapping technology is to address hitherto unanswered fundamental questions. Access to a sheer endless variety of configurations of central metabolism offers unique, new possibilities to study the fundamental design of metabolic pathways, the constraints that have shaped them and unifying principles for their structure and regulation. Moreover, this technology enables fast, combinatorial optimization studies on central metabolism to optimize its performance in biotechnological purposes.
Summary
Replacement of petrochemistry by bio-based processes is key to sustainable development and requires microbes equipped with novel-to-nature capabilities. The efficiency of such engineered microbes strongly depends on their native metabolic networks. However, aeons of evolution have optimized these networks for fitness in nature rather than for industrial performance. As a result, central metabolic networks are complex and encoded by mosaic microbial genomes in which genes, irrespective of their function, are scattered over the genome and chromosomes. This absence of a modular organization tremendously restricts genetic accessibility and presents a major hurdle for fundamental understanding and rational engineering of central metabolism. To conquer this limitation, I introduce the concept of ‘pathway swapping’, which will enable experimenters to remodel the core machinery of microbes at will.
Using the yeast Saccharomyces cerevisiae, an industrial biotechnology work horse and model eukaryotic cell, I propose to design and construct a microbial chassis in which all genes encoding enzymes in central carbon metabolism are relocated to a specialized synthetic chromosome, from which they can be easily swapped by any – homologous or heterologous – synthetic pathway. This challenging and innovative project paves the way for a modular approach to engineering of central metabolism.
Beyond providing a ground-breaking enabling technology, the ultimate goal of the pathway swapping technology is to address hitherto unanswered fundamental questions. Access to a sheer endless variety of configurations of central metabolism offers unique, new possibilities to study the fundamental design of metabolic pathways, the constraints that have shaped them and unifying principles for their structure and regulation. Moreover, this technology enables fast, combinatorial optimization studies on central metabolism to optimize its performance in biotechnological purposes.
Max ERC Funding
2 149 718 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym AFFORDS-HIGHER
Project Skilled Intentionality for 'Higher' Embodied Cognition: Joining forces with a field of affordances in flux
Researcher (PI) Dirk Willem Rietveld
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Summary
In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Max ERC Funding
1 499 850 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym aidsocpro
Project Aiding Social Protection: the political economy of externally financing social policy in developing countries
Researcher (PI) Andrew Martin Fischer
Host Institution (HI) ERASMUS UNIVERSITEIT ROTTERDAM
Call Details Starting Grant (StG), SH2, ERC-2014-STG
Summary This research proposal explores the political economy of international development assistance (aid) directed towards social expenditures, examined through the lens of a particular financial quandary that has been ignored in the literature despite having important economic and political repercussions. The quandary is that aid cannot be directly spent on expenditures denominated in domestic currency. Instead, aid needs to be first converted into domestic currency whereas the foreign exchange provided is used for other purposes, resulting in a process prone to complex politics regarding domestic monetary policy and spending commitments.
The implications require a serious rethink of many of the accepted premises in the political economy of aid and related literatures.
It is urgent to engage in this rethinking given tensions between two dynamics in the current global political economy: a tightening financial cycle facing developing countries versus an increasing emphasis in international development agendas of directing aid towards social expenditures. The financial quandary might exacerbate these tensions, restricting recipient government policy space despite donor commitments of respecting national ownership.
The proposed research examines these implications through the emerging social protection agenda among donors, which serves as an ideal policy case given that social protection expenditures are almost entirely based on domestic currency. This will be researched through a mixed-method comparative case study of six developing countries, combining quantitative analysis of balance of payments and financing constraints with qualitative process tracing based on elite interviews and documentary research. The objective is to re-orient our thinking on these issues for a deeper appreciation of the systemic political and economic challenges facing global redistribution towards poorer countries, particularly with respect to the forthcoming Sustainable Development Goals.
Summary
This research proposal explores the political economy of international development assistance (aid) directed towards social expenditures, examined through the lens of a particular financial quandary that has been ignored in the literature despite having important economic and political repercussions. The quandary is that aid cannot be directly spent on expenditures denominated in domestic currency. Instead, aid needs to be first converted into domestic currency whereas the foreign exchange provided is used for other purposes, resulting in a process prone to complex politics regarding domestic monetary policy and spending commitments.
The implications require a serious rethink of many of the accepted premises in the political economy of aid and related literatures.
It is urgent to engage in this rethinking given tensions between two dynamics in the current global political economy: a tightening financial cycle facing developing countries versus an increasing emphasis in international development agendas of directing aid towards social expenditures. The financial quandary might exacerbate these tensions, restricting recipient government policy space despite donor commitments of respecting national ownership.
The proposed research examines these implications through the emerging social protection agenda among donors, which serves as an ideal policy case given that social protection expenditures are almost entirely based on domestic currency. This will be researched through a mixed-method comparative case study of six developing countries, combining quantitative analysis of balance of payments and financing constraints with qualitative process tracing based on elite interviews and documentary research. The objective is to re-orient our thinking on these issues for a deeper appreciation of the systemic political and economic challenges facing global redistribution towards poorer countries, particularly with respect to the forthcoming Sustainable Development Goals.
Max ERC Funding
1 459 529 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AIDSRIGHTS
Project "Rights, Responsibilities, and the HIV/AIDS Pandemic: Global Impact on Moral and Political Subjectivity"
Researcher (PI) Jarrett Zigon
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary "This project will undertake a transnational, multi-sited ethnographic study of moral and political subjectivity in HIV/AIDS prevention and treatment programs from the perspective of socio-cultural anthropology. The main research question is: what kinds of politico-moral persons are constituted in institutional contexts that combine human rights and personal responsibility approaches to health, and how these kinds of subjectivities relate to local, national, and global forms of the politico-moral represented in health policies? In particular, this research will be carried out in Indonesia (Jakarta and Bali), South Africa (Western Cape), USA (New York City), and various locations throughout Eastern Europe in HIV/AIDS programs and institutions that increasingly combine human rights and personal responsibility approaches to treatment and prevention. This project is the first anthropological research on health governance done on a global scale. Until now most anthropological studies have focused on one health program in one location without simultaneously studying similar processes in comparable contexts in other parts of the world. In contrast, this project will take a global perspective on the relationship between health issues, morality, and governance by doing transnational multi-sited research. This project will significantly contribute to the current anthropological focus on bio-citizenship and push it in new directions, resulting in a new anthropological theory of global bio-political governance and global politico-moral subjectivities. This theory will describe and explain recent transnational processes of shaping particular kinds of politico-moral subjectivities through health initiatives. By doing research in comparable world areas this project will significantly contribute to the development of a theory of politico-moral governance with global reach."
Summary
"This project will undertake a transnational, multi-sited ethnographic study of moral and political subjectivity in HIV/AIDS prevention and treatment programs from the perspective of socio-cultural anthropology. The main research question is: what kinds of politico-moral persons are constituted in institutional contexts that combine human rights and personal responsibility approaches to health, and how these kinds of subjectivities relate to local, national, and global forms of the politico-moral represented in health policies? In particular, this research will be carried out in Indonesia (Jakarta and Bali), South Africa (Western Cape), USA (New York City), and various locations throughout Eastern Europe in HIV/AIDS programs and institutions that increasingly combine human rights and personal responsibility approaches to treatment and prevention. This project is the first anthropological research on health governance done on a global scale. Until now most anthropological studies have focused on one health program in one location without simultaneously studying similar processes in comparable contexts in other parts of the world. In contrast, this project will take a global perspective on the relationship between health issues, morality, and governance by doing transnational multi-sited research. This project will significantly contribute to the current anthropological focus on bio-citizenship and push it in new directions, resulting in a new anthropological theory of global bio-political governance and global politico-moral subjectivities. This theory will describe and explain recent transnational processes of shaping particular kinds of politico-moral subjectivities through health initiatives. By doing research in comparable world areas this project will significantly contribute to the development of a theory of politico-moral governance with global reach."
Max ERC Funding
1 499 370 €
Duration
Start date: 2012-05-01, End date: 2017-04-30