Project acronym COLLMOT
Project Complex structure and dynamics of collective motion
Researcher (PI) Tamas Vicsek
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Country Hungary
Call Details Advanced Grant (AdG), PE3, ERC-2008-AdG
Summary Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Summary
Collective behaviour is a widespread phenomenon in nature and technology making it a very important subject to study in various contexts. The main goal we intend to achieve in our multidisciplinary research is the identification and documentation of new unifying principles describing the essential aspects of collective motion, being one of the most relevant and spectacular manifestations of collective behaviour. We shall carry out novel type of experiments, design models that are both simple and realistic enough to reproduce the observations and develop concepts for a better interpretation of the complexity of systems consisting of many organisms and such non-living objects as interacting robots. We plan to study systems ranging from cultures of migrating tissue cells through flocks of birds to collectively moving devices. The interrelation of these systems will be considered in order to deepen the understanding of the main patterns of group motion in both living and non-living systems by learning about the similar phenomena in the two domains of nature. Thus, we plan to understand the essential ingredients of flocking of birds by building collectively moving unmanned aerial vehicles while, in turn, high resolution spatiotemporal GPS data of pigeon flocks will be used to make helpful conclusions for the best designs for swarms of robots. In particular, we shall construct and build a set of vehicles that will be capable, for the first time, to exhibit flocking behaviour in the three-dimensional space. The methods we shall adopt will range from approaches used in statistical physics and network theory to various new techniques in cell biology and collective robotics. All this will be based on numerous prior results (both ours and others) published in leading interdisciplinary journals. The planned research will have the potential of leading to ground breaking results with significant implications in various fields of science and technology.
Max ERC Funding
1 248 000 €
Duration
Start date: 2009-03-01, End date: 2015-02-28
Project acronym DARE
Project Soil Foundation Structure Systems Beyond Conventional Seismic Failure Thresholds: Application to New or Existing Structures and Monuments
Researcher (PI) George Gazetas
Host Institution (HI) NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
Country Greece
Call Details Advanced Grant (AdG), PE8, ERC-2008-AdG
Summary The main goal of the proposed research is to investigate the possibility of allowing below-ground support systems to respond to strong seismic shaking by going beyond a number of thresholds that would conventionally imply failure and are today forbidden by codes. Such thresholds include : (a) sliding at the soil-foundation interface ; (b) separation and uplifting of a shallow foundation from the soils ; (c) mobilization of bearing capacity failure mechanism for shallow foundations ; (d) structural yielding of pile foundations ; (e) combination of some of the above. Whereas under static loading conditions a slight exceedance of such thresholds leads to failure, the oscillatory nature of seismic shaking will allow such exceedances for a short period of time, with perhaps no detrimental or irreparable consequences. The latter take the form of permanent foundation displacements, rotations, or injuries , which the designer will aspire to confine within rational limits. The motivation and the need for this research has come from : (i) observations of actual behaviour in a variety of earthquakes ; conspicuous examples : the permanent tilting , overturning, and often survival of numerous buildings on extremely soft soil in Adapazari during the Kocaeli 1999 earthquake ; (ii) the foundation design of a number of critical structures (e.g., major bridge pier, air control tower, tall monuments, elevated water tanks,) against large seismic actions ; the disproportionately large overturning moment and/or base shear force of such slender structures can hardly be faced with today s conventional foundation methods, (iii) the need to seismically retrofit and rehabilitate older structures and historical monuments; (iv) structural yielding of pile foundations is now detectable (thanks to technological advances), thus eliminating one of the reasons for avoiding it.
Summary
The main goal of the proposed research is to investigate the possibility of allowing below-ground support systems to respond to strong seismic shaking by going beyond a number of thresholds that would conventionally imply failure and are today forbidden by codes. Such thresholds include : (a) sliding at the soil-foundation interface ; (b) separation and uplifting of a shallow foundation from the soils ; (c) mobilization of bearing capacity failure mechanism for shallow foundations ; (d) structural yielding of pile foundations ; (e) combination of some of the above. Whereas under static loading conditions a slight exceedance of such thresholds leads to failure, the oscillatory nature of seismic shaking will allow such exceedances for a short period of time, with perhaps no detrimental or irreparable consequences. The latter take the form of permanent foundation displacements, rotations, or injuries , which the designer will aspire to confine within rational limits. The motivation and the need for this research has come from : (i) observations of actual behaviour in a variety of earthquakes ; conspicuous examples : the permanent tilting , overturning, and often survival of numerous buildings on extremely soft soil in Adapazari during the Kocaeli 1999 earthquake ; (ii) the foundation design of a number of critical structures (e.g., major bridge pier, air control tower, tall monuments, elevated water tanks,) against large seismic actions ; the disproportionately large overturning moment and/or base shear force of such slender structures can hardly be faced with today s conventional foundation methods, (iii) the need to seismically retrofit and rehabilitate older structures and historical monuments; (iv) structural yielding of pile foundations is now detectable (thanks to technological advances), thus eliminating one of the reasons for avoiding it.
Max ERC Funding
2 399 992 €
Duration
Start date: 2008-12-01, End date: 2013-10-31
Project acronym DISCRETECONT
Project From discrete to contimuous: understanding discrete structures through continuous approximation
Researcher (PI) Laszlo Lovasz
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Country Hungary
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Important methods and results in discrete mathematics arise from the interaction between discrete mathematics and ``continuous'' areas like analysis or geometry. Classical examples of this include topological methods, linear and semidefinite optimization generating functions and more. More recent areas stressing this connection are the theory of limit objects of growing sequences of finite structures (graphs, hypergraphs, sequences), differential equations on networks, geometric representations of graphs. Perhaps most promising is the study of limits of growing graph and hypergraph sequences. In resent work by the Proposer and his collaborators, this area has found highly nontrivial connections with extremal graph theory, the theory of property testing in computer science, to additive number theory, the theory of random graphs, and measure theory as well as geometric representations of graphs. This proposal's goal is to explore these interactions, with the participation of a number of researchers from different areas of mathematics.
Summary
Important methods and results in discrete mathematics arise from the interaction between discrete mathematics and ``continuous'' areas like analysis or geometry. Classical examples of this include topological methods, linear and semidefinite optimization generating functions and more. More recent areas stressing this connection are the theory of limit objects of growing sequences of finite structures (graphs, hypergraphs, sequences), differential equations on networks, geometric representations of graphs. Perhaps most promising is the study of limits of growing graph and hypergraph sequences. In resent work by the Proposer and his collaborators, this area has found highly nontrivial connections with extremal graph theory, the theory of property testing in computer science, to additive number theory, the theory of random graphs, and measure theory as well as geometric representations of graphs. This proposal's goal is to explore these interactions, with the participation of a number of researchers from different areas of mathematics.
Max ERC Funding
739 671 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym ELITES08
Project Culturally Composite Elites, Regime Changes and Social Crises in Multi-Ethnic and Multi-Confessional Eastern Europe. (The Carpathian Basin and the Baltics in Comparison - cc. 1900-1950)
Researcher (PI) Gyozo Istvan Karady
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Country Hungary
Call Details Advanced Grant (AdG), SH6, ERC-2008-AdG
Summary The project is multi-disciplinary by character. It focuses upon socio-historical processes of the transformation and 'circulation' of educated and ruling elites in several uniquely composite (both multi-ethnic and multi-confessional) East European regional or national societies, having experienced a number of radical changes of social and political regime as well as state souvereignty in the first half of the 20th century. The historical scope of the study extends from post-feudalism to communism. Societies involved comprise Hungary, Slovakia, Transylvania, Voivodina in the Carpathian Basin, Latvia and Estonia in the Baltics. The study draws upon sociological survey methods applied to historically successive elite brackets in form of exhaustive or quasi-exhaustive computerized prosopographical data banks, based on standardized individual biographies of elite members (as permitted by mostly archival sources to be exploited). The main targets would include secondary school graduates, students and graduates of higher education, the main intellectual professions (like doctors and lawyers.), the political power elites as well as 'reputational elites' - those cited in biographical dictionaries. The information fed into our data banks help to clarify thanks to various procedures of multi-variate statistical schemes the contrasting socio-cultural selection and recruitment of elite members, their educational path from primary to higher education, their professional career, intellectual creativity as well as socio-political standing and orientation. This is the first time that large region- or country-wide elite clusters are submitted to systematic socio-historical analyses, covering simultaneously all or most markets of activity and self-assertion of educated clusters in a vast international and comparative perspective related to culturally composite societal formations.
Summary
The project is multi-disciplinary by character. It focuses upon socio-historical processes of the transformation and 'circulation' of educated and ruling elites in several uniquely composite (both multi-ethnic and multi-confessional) East European regional or national societies, having experienced a number of radical changes of social and political regime as well as state souvereignty in the first half of the 20th century. The historical scope of the study extends from post-feudalism to communism. Societies involved comprise Hungary, Slovakia, Transylvania, Voivodina in the Carpathian Basin, Latvia and Estonia in the Baltics. The study draws upon sociological survey methods applied to historically successive elite brackets in form of exhaustive or quasi-exhaustive computerized prosopographical data banks, based on standardized individual biographies of elite members (as permitted by mostly archival sources to be exploited). The main targets would include secondary school graduates, students and graduates of higher education, the main intellectual professions (like doctors and lawyers.), the political power elites as well as 'reputational elites' - those cited in biographical dictionaries. The information fed into our data banks help to clarify thanks to various procedures of multi-variate statistical schemes the contrasting socio-cultural selection and recruitment of elite members, their educational path from primary to higher education, their professional career, intellectual creativity as well as socio-political standing and orientation. This is the first time that large region- or country-wide elite clusters are submitted to systematic socio-historical analyses, covering simultaneously all or most markets of activity and self-assertion of educated clusters in a vast international and comparative perspective related to culturally composite societal formations.
Max ERC Funding
771 628 €
Duration
Start date: 2009-01-01, End date: 2012-03-31
Project acronym MEDIGRA
Project Mechanics of Energy Dissipation in Dense Granular Materials
Researcher (PI) Ioannis Vardoulakis
Host Institution (HI) NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
Country Greece
Call Details Advanced Grant (AdG), PE8, ERC-2008-AdG
Summary Granular materials are of interest to different fields of the physical sciences and engineering. To model their behaviour, either a solid- or fluid mechanics approach is used. Rather than deforming uniformly, granular fluids develop thin shear-bands, which mark areas of flow, material failure and energy dissipation. The MEDIGRA project proposes a thorough experimental, theoretical and numerical study of the Mechanics of Energy DIssipation in dense GRAnular materials. The fundamental challenge faced by the project is to quantify the various energy dissipation mechanisms in dense granular materials using innovative thermo-poromechanical experiments. The measured characteristics are expected to lead to the formulation of appropriate analytical and numerical tools aimed to describe the mechanical behaviour of granular materials from the rigorous angle of energetics. In particular, the project proposes to: 1) Design, develop, install and exploit a novel Thermographic High Speed Cylinder Shear Apparatus (THSCSA) to study the properties of the mechanical and thermal boundary layer that is forming at the inner rotating-drum material interface, as well as determining the required thermographic properties of granular materials. 2) Convincingly quantify the way the total energy dissipation is split into heat production, grain breakage and other mechanisms, using the project-developed THSCSA apparatus and other advanced experimental apparatuses. 3) Develop physical models and robust numerical tools capable of incorporating the experimentally obtained dissipation characteristics. 4) Test the knowledge acquired within the project in two applications (shear segregation and landslide modelling). The project aims to advance our knowledge on the basic physics behind long-standing open problems such as the “heat-flow paradox” in earthquake mechanics, the lifetime prediction of imminent catastrophic landslides and the applicability of continuum approximations to segregation phenomena.
Summary
Granular materials are of interest to different fields of the physical sciences and engineering. To model their behaviour, either a solid- or fluid mechanics approach is used. Rather than deforming uniformly, granular fluids develop thin shear-bands, which mark areas of flow, material failure and energy dissipation. The MEDIGRA project proposes a thorough experimental, theoretical and numerical study of the Mechanics of Energy DIssipation in dense GRAnular materials. The fundamental challenge faced by the project is to quantify the various energy dissipation mechanisms in dense granular materials using innovative thermo-poromechanical experiments. The measured characteristics are expected to lead to the formulation of appropriate analytical and numerical tools aimed to describe the mechanical behaviour of granular materials from the rigorous angle of energetics. In particular, the project proposes to: 1) Design, develop, install and exploit a novel Thermographic High Speed Cylinder Shear Apparatus (THSCSA) to study the properties of the mechanical and thermal boundary layer that is forming at the inner rotating-drum material interface, as well as determining the required thermographic properties of granular materials. 2) Convincingly quantify the way the total energy dissipation is split into heat production, grain breakage and other mechanisms, using the project-developed THSCSA apparatus and other advanced experimental apparatuses. 3) Develop physical models and robust numerical tools capable of incorporating the experimentally obtained dissipation characteristics. 4) Test the knowledge acquired within the project in two applications (shear segregation and landslide modelling). The project aims to advance our knowledge on the basic physics behind long-standing open problems such as the “heat-flow paradox” in earthquake mechanics, the lifetime prediction of imminent catastrophic landslides and the applicability of continuum approximations to segregation phenomena.
Max ERC Funding
981 600 €
Duration
Start date: 2008-11-01, End date: 2011-10-31
Project acronym NEURONAGE
Project Molecular Basis of Neuronal Ageing
Researcher (PI) Nektarios Tavernarakis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Country Greece
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Ageing is associated with marked decrease of neuronal function and increased susceptibility to neurodegeneration, in organisms as diverse as the lowly worm Caenorhabditis elegans and humans. Although, age-related deterioration of the nervous system is a universal phenomenon, its cellular and molecular underpinnings remain obscure. What mechanisms are responsible for the detrimental effects of ageing on neuronal function? The aim of the proposed research programme is to address this fundamental problem. We will implement an interdisciplinary approach, combining the power of C. elegans, a highly malleable genetic model which offers a precisely defined nervous system, with state-of-the-art microfluidics and optical imaging technologies, to manipulate and monitor neuronal activity during ageing, in vivo. Our objectives are four-fold. First, develop a microfluidics platform for high-throughput manipulation and imaging of specific neurons in individual animals, in vivo. Second, use the platform to monitor neuronal function during ageing in isogenic populations of wild type animals, long-lived mutants and animals under caloric restriction, a condition known to extend lifespan from yeast to primates. Third, examine how ageing modulates susceptibility to neuronal damage in nematode models of human neurodegenerative disorders. Fourth, conduct both forward and reverse genetic screens for modifiers of resistance to ageing-inflicted neuronal function decline. We will seek to identify and thoroughly characterize genes and molecular pathways involved in neuron deterioration during ageing. Ultimately, we will investigate the functional conservation of key isolated factors in more complex ageing models such as Drosophila and the mouse. Together, these studies will lead to an unprecedented understanding of age-related breakdown of neuronal function and will provide critical insights with broad relevance to human health and quality of life.
Summary
Ageing is associated with marked decrease of neuronal function and increased susceptibility to neurodegeneration, in organisms as diverse as the lowly worm Caenorhabditis elegans and humans. Although, age-related deterioration of the nervous system is a universal phenomenon, its cellular and molecular underpinnings remain obscure. What mechanisms are responsible for the detrimental effects of ageing on neuronal function? The aim of the proposed research programme is to address this fundamental problem. We will implement an interdisciplinary approach, combining the power of C. elegans, a highly malleable genetic model which offers a precisely defined nervous system, with state-of-the-art microfluidics and optical imaging technologies, to manipulate and monitor neuronal activity during ageing, in vivo. Our objectives are four-fold. First, develop a microfluidics platform for high-throughput manipulation and imaging of specific neurons in individual animals, in vivo. Second, use the platform to monitor neuronal function during ageing in isogenic populations of wild type animals, long-lived mutants and animals under caloric restriction, a condition known to extend lifespan from yeast to primates. Third, examine how ageing modulates susceptibility to neuronal damage in nematode models of human neurodegenerative disorders. Fourth, conduct both forward and reverse genetic screens for modifiers of resistance to ageing-inflicted neuronal function decline. We will seek to identify and thoroughly characterize genes and molecular pathways involved in neuron deterioration during ageing. Ultimately, we will investigate the functional conservation of key isolated factors in more complex ageing models such as Drosophila and the mouse. Together, these studies will lead to an unprecedented understanding of age-related breakdown of neuronal function and will provide critical insights with broad relevance to human health and quality of life.
Max ERC Funding
2 376 000 €
Duration
Start date: 2009-05-01, End date: 2015-04-30
Project acronym PRIMEGAPS
Project Gaps between primes and almost primes. Patterns in primes and almost primes. Approximations to the twin prime and Goldbach conjectures
Researcher (PI) Janos Pintz
Host Institution (HI) RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Country Hungary
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The twin prime conjecture, that n and n+2 are infinitely often primes simultaneously, is probably the oldest unsolved problem in mathematics. De Polignac (1849) conjectured that for every even value of h, n and n+h are infinitely often primes simultaneously. These are the most basic problems on gaps and patterns in primes. Another one is the conjecture of Waring (1770), stating that there are arbitrarily long arithmetic progressions (AP) of primes. For the newest developments we cite Granville (Bull. AMS 43 (2006), p.93): ): Despite much research of excellent quality, there have been few breakthroughs on the most natural questions about the distribution of prime numbers in the last few decades. That situation has recently changed dramatically with two extraordinary breakthroughs, each on questions that the experts had held out little hope for in the foreseeable future. Green and Tao proved that there are infinitely many k-term arithmetic progressions of primes using methods that are mostly far removed from mainstream analytic number theory. Indeed, their work centers around a brilliant development of recent results in ergodic theory and harmonic analysis. Their proof is finished, in a natural way, by an adaptation of the proof of the other fantastic new result in this area, Goldston, Pintz and Yildirim s proof that there are small gaps between primes. The proposal's aim is to study these types of patterns in primes with possible combination of the two theories. We quote 3 of the main problems, the first one being the most important. 1) Bounded Gap Conjecture. Are there infinitely many bounded gaps between primes? 2) Suppose that primes have a level of distribution larger than 1/2. Does a fixed h exists such that for every k there is a k-term AP of generalised twin prime pairs (p, p+h)? 3) Erdôs' conjecture for k=3. Suppose A is a sequence of natural numbers, such that the sum of their reciprocals is unbounded. Does A contain infinitely many 3-term AP's?
Summary
The twin prime conjecture, that n and n+2 are infinitely often primes simultaneously, is probably the oldest unsolved problem in mathematics. De Polignac (1849) conjectured that for every even value of h, n and n+h are infinitely often primes simultaneously. These are the most basic problems on gaps and patterns in primes. Another one is the conjecture of Waring (1770), stating that there are arbitrarily long arithmetic progressions (AP) of primes. For the newest developments we cite Granville (Bull. AMS 43 (2006), p.93): ): Despite much research of excellent quality, there have been few breakthroughs on the most natural questions about the distribution of prime numbers in the last few decades. That situation has recently changed dramatically with two extraordinary breakthroughs, each on questions that the experts had held out little hope for in the foreseeable future. Green and Tao proved that there are infinitely many k-term arithmetic progressions of primes using methods that are mostly far removed from mainstream analytic number theory. Indeed, their work centers around a brilliant development of recent results in ergodic theory and harmonic analysis. Their proof is finished, in a natural way, by an adaptation of the proof of the other fantastic new result in this area, Goldston, Pintz and Yildirim s proof that there are small gaps between primes. The proposal's aim is to study these types of patterns in primes with possible combination of the two theories. We quote 3 of the main problems, the first one being the most important. 1) Bounded Gap Conjecture. Are there infinitely many bounded gaps between primes? 2) Suppose that primes have a level of distribution larger than 1/2. Does a fixed h exists such that for every k there is a k-term AP of generalised twin prime pairs (p, p+h)? 3) Erdôs' conjecture for k=3. Suppose A is a sequence of natural numbers, such that the sum of their reciprocals is unbounded. Does A contain infinitely many 3-term AP's?
Max ERC Funding
1 376 400 €
Duration
Start date: 2008-11-01, End date: 2013-10-31