Project acronym A-BINGOS
Project Accreting binary populations in Nearby Galaxies: Observations and Simulations
Researcher (PI) Andreas Zezas
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Summary
"High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Max ERC Funding
1 242 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym ArcheoDyn
Project Globular clusters as living fossils of the past of galaxies
Researcher (PI) Petrus VAN DE VEN
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Summary
Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Max ERC Funding
1 999 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ASSESS
Project Episodic Mass Loss in the Most Massive Stars: Key to Understanding the Explosive Early Universe
Researcher (PI) Alceste BONANOS
Host Institution (HI) NATIONAL OBSERVATORY OF ATHENS
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary Massive stars dominate their surroundings during their short lifetimes, while their explosive deaths impact the chemical evolution and spatial cohesion of their hosts. After birth, their evolution is largely dictated by their ability to remove layers of hydrogen from their envelopes. Multiple lines of evidence are pointing to violent, episodic mass-loss events being responsible for removing a large part of the massive stellar envelope, especially in low-metallicity galaxies. Episodic mass loss, however, is not understood theoretically, neither accounted for in state-of-the-art models of stellar evolution, which has far-reaching consequences for many areas of astronomy. We aim to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. The project hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We plan to (i) derive physical parameters of a large sample of dusty, evolved targets and estimate the amount of ejected mass, (ii) constrain evolutionary models, (iii) quantify the duration and frequency of episodic mass loss as a function of metallicity. The approach involves applying machine-learning algorithms to existing multi-band and time-series photometry of luminous sources in ~25 nearby galaxies. Dusty, luminous evolved massive stars will thus be automatically classified and follow-up spectroscopy will be obtained for selected targets. Atmospheric and SED modeling will yield parameters and estimates of time-dependent mass loss for ~1000 luminous stars. The emerging trend for the ubiquity of episodic mass loss, if confirmed, will be key to understanding the explosive early Universe and will have profound consequences for low-metallicity stars, reionization, and the chemical evolution of galaxies.
Summary
Massive stars dominate their surroundings during their short lifetimes, while their explosive deaths impact the chemical evolution and spatial cohesion of their hosts. After birth, their evolution is largely dictated by their ability to remove layers of hydrogen from their envelopes. Multiple lines of evidence are pointing to violent, episodic mass-loss events being responsible for removing a large part of the massive stellar envelope, especially in low-metallicity galaxies. Episodic mass loss, however, is not understood theoretically, neither accounted for in state-of-the-art models of stellar evolution, which has far-reaching consequences for many areas of astronomy. We aim to determine whether episodic mass loss is a dominant process in the evolution of the most massive stars by conducting the first extensive, multi-wavelength survey of evolved massive stars in the nearby Universe. The project hinges on the fact that mass-losing stars form dust and are bright in the mid-infrared. We plan to (i) derive physical parameters of a large sample of dusty, evolved targets and estimate the amount of ejected mass, (ii) constrain evolutionary models, (iii) quantify the duration and frequency of episodic mass loss as a function of metallicity. The approach involves applying machine-learning algorithms to existing multi-band and time-series photometry of luminous sources in ~25 nearby galaxies. Dusty, luminous evolved massive stars will thus be automatically classified and follow-up spectroscopy will be obtained for selected targets. Atmospheric and SED modeling will yield parameters and estimates of time-dependent mass loss for ~1000 luminous stars. The emerging trend for the ubiquity of episodic mass loss, if confirmed, will be key to understanding the explosive early Universe and will have profound consequences for low-metallicity stars, reionization, and the chemical evolution of galaxies.
Max ERC Funding
1 128 750 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ChromatinTargets
Project Systematic in-vivo analysis of chromatin-associated targets in leukemia
Researcher (PI) Johannes Zuber
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS4, ERC-2013-StG
Summary Recent advances in genome sequencing illustrate the complexity, heterogeneity and plasticity of cancer genomes. In leukemia - a group of blood cancers affecting 300,000 new patients every year – we know over 100 driver mutations. This genetic complexity poses a daunting challenge for the development of targeted therapies and highlights the urgent need for evaluating them in combination. One gene class that has recently emerged as highly promising target space are chromatin regulators, which maintain aberrant cell fate programs in leukemia. The dependency on altered chromatin states is thought to provide great therapeutic opportunities, since epigenetic aberrations are reversible and controlled by a machinery that is amenable to drug modulation. However, the precise mechanisms underlying these dependencies and the most effective and safe targets to exploit them therapeutically remain unknown.
Here we propose an innovative approach combining genetically engineered leukemia mouse models and advanced in-vivo RNAi technologies to explore chromatin-associated vulnerabilities at an unprecedented level of depth. Following a first screen in MLL-AF9;Nras-driven AML, which led to the discovery of BRD4 as a promising therapeutic target, we aim to (1) construct a knockdown-validated shRNA library targeting 520 chromatin regulators and use it to comparatively probe chromatin-associated dependencies in diverse leukemia subtypes; (2) explore the mechanistic basis of response and resistance to suppression of BRD4 and new chromatin-associated targets; and (3) pioneer a system for multiplexed combinatorial RNAi screening and use it to identify synergies between established and new chromatin-associated targets. We envision that this ERC-funded project will generate a comprehensive functional-genetic dataset that will greatly complement ongoing genome and epigenome profiling studies and ultimately guide the development of targeted therapies for leukemia and, potentially, other cancers.
Summary
Recent advances in genome sequencing illustrate the complexity, heterogeneity and plasticity of cancer genomes. In leukemia - a group of blood cancers affecting 300,000 new patients every year – we know over 100 driver mutations. This genetic complexity poses a daunting challenge for the development of targeted therapies and highlights the urgent need for evaluating them in combination. One gene class that has recently emerged as highly promising target space are chromatin regulators, which maintain aberrant cell fate programs in leukemia. The dependency on altered chromatin states is thought to provide great therapeutic opportunities, since epigenetic aberrations are reversible and controlled by a machinery that is amenable to drug modulation. However, the precise mechanisms underlying these dependencies and the most effective and safe targets to exploit them therapeutically remain unknown.
Here we propose an innovative approach combining genetically engineered leukemia mouse models and advanced in-vivo RNAi technologies to explore chromatin-associated vulnerabilities at an unprecedented level of depth. Following a first screen in MLL-AF9;Nras-driven AML, which led to the discovery of BRD4 as a promising therapeutic target, we aim to (1) construct a knockdown-validated shRNA library targeting 520 chromatin regulators and use it to comparatively probe chromatin-associated dependencies in diverse leukemia subtypes; (2) explore the mechanistic basis of response and resistance to suppression of BRD4 and new chromatin-associated targets; and (3) pioneer a system for multiplexed combinatorial RNAi screening and use it to identify synergies between established and new chromatin-associated targets. We envision that this ERC-funded project will generate a comprehensive functional-genetic dataset that will greatly complement ongoing genome and epigenome profiling studies and ultimately guide the development of targeted therapies for leukemia and, potentially, other cancers.
Max ERC Funding
1 498 985 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CombaTCancer
Project Rational combination therapies for metastatic cancer
Researcher (PI) Anna Obenauf
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Summary
Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym COMBINE
Project From flies to humans combining whole genome screens and tissue specific gene targeting to identify novel pathways involved in cancer and metastases
Researcher (PI) Josef Martin Penninger
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary Cancer care will be revolutionized over the next decade by the introduction of novel therapeutics that target the underlying molecular mechanisms of the disease. With the advent of human genetics, a plethora of genes have been correlated with human diseases such as cancer the SNP maps. Since the sequences are now available, the next big challenge is to determine the function of these genes in the context of the entire organism. Genetic animal models have proven to be extremely valuable to elucidate the essential functions of genes in normal physiology and the pathogenesis of disease. Using gene-targeted mice we have previously identified RANKL as a master gene of bone loss in arthritis, osteoporosis, and cancer cell migration and metastases and genes that control heart and kidney function; wound healing; diabetes; or lung injury Our primary goal is to use functional genomics in Drosophila and mice to understand cell transformation, invasion, and cancer metastases of epithelial tumors. The following projects are proposed: 1. Role of the key osteoclast differentiation factors RANKL-RANK and its downstream signalling cascade in the development of breast and prostate cancer. 2. Requirement of osteoclasts for bone metastases and stem cell niches using a new RANKfloxed allele; function of RANKL-RANK in local tumor cell invasion. 3. Role of RANKL-RANK in the central fever response to understand potential implications of future RANKL-RANK directed therapies. 4. Integration of gene targeting in mice with state-of-the art technologies in fly genetics; use of whole genome tissue-specific in vivo RNAi Drosophila libraries to identify essential and novel pathways for cancer pathogenesis using whole genome screens. 5. Role of TSPAN6, as a candidate lung metastasis gene. Identification of new cancer disease genes will allow us to design novel strategies for cancer treatment and will have ultimately impact on the basic understanding of cancer, metastases, and human health.
Summary
Cancer care will be revolutionized over the next decade by the introduction of novel therapeutics that target the underlying molecular mechanisms of the disease. With the advent of human genetics, a plethora of genes have been correlated with human diseases such as cancer the SNP maps. Since the sequences are now available, the next big challenge is to determine the function of these genes in the context of the entire organism. Genetic animal models have proven to be extremely valuable to elucidate the essential functions of genes in normal physiology and the pathogenesis of disease. Using gene-targeted mice we have previously identified RANKL as a master gene of bone loss in arthritis, osteoporosis, and cancer cell migration and metastases and genes that control heart and kidney function; wound healing; diabetes; or lung injury Our primary goal is to use functional genomics in Drosophila and mice to understand cell transformation, invasion, and cancer metastases of epithelial tumors. The following projects are proposed: 1. Role of the key osteoclast differentiation factors RANKL-RANK and its downstream signalling cascade in the development of breast and prostate cancer. 2. Requirement of osteoclasts for bone metastases and stem cell niches using a new RANKfloxed allele; function of RANKL-RANK in local tumor cell invasion. 3. Role of RANKL-RANK in the central fever response to understand potential implications of future RANKL-RANK directed therapies. 4. Integration of gene targeting in mice with state-of-the art technologies in fly genetics; use of whole genome tissue-specific in vivo RNAi Drosophila libraries to identify essential and novel pathways for cancer pathogenesis using whole genome screens. 5. Role of TSPAN6, as a candidate lung metastasis gene. Identification of new cancer disease genes will allow us to design novel strategies for cancer treatment and will have ultimately impact on the basic understanding of cancer, metastases, and human health.
Max ERC Funding
2 499 465 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CSI-Fun
Project Chronic Systemic Inflammation: Functional organ cross-talk in inflammatory disease and cancer
Researcher (PI) Erwin Friedrich WAGNER
Host Institution (HI) MEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS4, ERC-2016-ADG
Summary Chronic Systemic Inflammation (CSI) resulting from systemic release of inflammatory cytokines and activation of the immune system is responsible for the progression of several debilitating diseases, such as Psoriasis, Arthritis and Cancer. Initially localised diseases can result in CSI with subsequent systemic spread to distant organs, a key patho-physiological phase responsible for major morbidity and even mortality. Despite the importance of CSI, a complete understanding of the molecular mechanisms, signalling pathways and cell types involved, as well as the chronological evolution of the systemic inflammatory response is still elusive. The classical approach to study inflammation has focused on investigating individual cell types or organs in the pathogenesis of a single disease, thereby neglecting important organ cross-talk and systemic interactions. Furthermore, understanding the temporal and spatial kinetics modulating the inflammatory response requires a detailed study of interactions between different immune and non-immune organs at various time points during disease progression in the context of the whole organism.
The aim of this research proposal is to substantially advance our understanding of whole organ physiology in relation to systemic inflammation as a cause or/and consequence of disease with the focus on Psoriasis/Joint Diseases and Cancer Cachexia. The goal is to elucidate the molecular mechanisms at the cellular and systemic level, and to decipher endocrine interactions and cross-talks between distant organs. Various model systems ranging from cell cultures to genetically engineered mouse models to human clinical samples will be employed. Genomic, proteomic and metabolomic data will be combined with functional in vivo assessment using mouse models to understand the multi-faceted role of systemic inflammation in chronic human diseases, such as Inflammatory Skin/Joint disease and Cachexia, a deadly systemic manifestation of Cancer.
Summary
Chronic Systemic Inflammation (CSI) resulting from systemic release of inflammatory cytokines and activation of the immune system is responsible for the progression of several debilitating diseases, such as Psoriasis, Arthritis and Cancer. Initially localised diseases can result in CSI with subsequent systemic spread to distant organs, a key patho-physiological phase responsible for major morbidity and even mortality. Despite the importance of CSI, a complete understanding of the molecular mechanisms, signalling pathways and cell types involved, as well as the chronological evolution of the systemic inflammatory response is still elusive. The classical approach to study inflammation has focused on investigating individual cell types or organs in the pathogenesis of a single disease, thereby neglecting important organ cross-talk and systemic interactions. Furthermore, understanding the temporal and spatial kinetics modulating the inflammatory response requires a detailed study of interactions between different immune and non-immune organs at various time points during disease progression in the context of the whole organism.
The aim of this research proposal is to substantially advance our understanding of whole organ physiology in relation to systemic inflammation as a cause or/and consequence of disease with the focus on Psoriasis/Joint Diseases and Cancer Cachexia. The goal is to elucidate the molecular mechanisms at the cellular and systemic level, and to decipher endocrine interactions and cross-talks between distant organs. Various model systems ranging from cell cultures to genetically engineered mouse models to human clinical samples will be employed. Genomic, proteomic and metabolomic data will be combined with functional in vivo assessment using mouse models to understand the multi-faceted role of systemic inflammation in chronic human diseases, such as Inflammatory Skin/Joint disease and Cachexia, a deadly systemic manifestation of Cancer.
Max ERC Funding
2 499 875 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym DeFiNER
Project Nucleotide Excision Repair: Decoding its Functional Role in Mammals
Researcher (PI) Georgios Garinis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Summary
Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Max ERC Funding
1 995 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym GalNUC
Project Astrophysical Dynamics and Statistical Physics of Galactic Nuclei
Researcher (PI) Bence Kocsis
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Summary
We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Max ERC Funding
1 511 436 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym HAPLOID
Project “Yeast” genetics in mammalian cells to identify fundamental mechanisms of physiology and pathophysiology
Researcher (PI) Josef Penninger
Host Institution (HI) INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary "Some organisms such as yeast or social insects are haploid, i.e. they carry a single set of chromosomes. Organisms with a single copy of their genome provide a basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Recessive genetic screens have markedly contributed to our understanding of normal development, basic physiology, and disease. However, all somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure mutational screens. Although deemed impossible, we were able to develop generate mammalian haploid embryonic stem cells, thereby breaking a paradigm of biology.
Our novel stem opens the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. The following projects are proposed:
1. Towards“yeast” genetics in mammalian stem cells. Development of optimized technologies for rapid, genome-wide screens via repairable mutagenesis. Mutational bar-coding to introduce quantitative genomics to mammalian biology.
2. Forward genetic screens to uncover essential stem cell genes, identify novel stemness factors, develop improved systems for iPS cell derivation, and to perform synthetic lethal screens for anti-cancer drugs.
3. Reverse genetics using to identify and validate genes involved in cardiovascular physiology, brown and white fat cell development, and pain sensing.
4. Hit validation – exemplified by resistance to the bioweapon ricin.
Haploid embryonic stem cells carry the promise to revolutionize functional genetics and allow rapid, near whole genome-wide mutational forward genetics analysis and reverse genetics in defined cell types. Our systems will be made available to all researchers and the knowledge gained from our studies should fundamentally impact on the basic understanding of physiology and disease pathogenesis."
Summary
"Some organisms such as yeast or social insects are haploid, i.e. they carry a single set of chromosomes. Organisms with a single copy of their genome provide a basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Recessive genetic screens have markedly contributed to our understanding of normal development, basic physiology, and disease. However, all somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure mutational screens. Although deemed impossible, we were able to develop generate mammalian haploid embryonic stem cells, thereby breaking a paradigm of biology.
Our novel stem opens the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. The following projects are proposed:
1. Towards“yeast” genetics in mammalian stem cells. Development of optimized technologies for rapid, genome-wide screens via repairable mutagenesis. Mutational bar-coding to introduce quantitative genomics to mammalian biology.
2. Forward genetic screens to uncover essential stem cell genes, identify novel stemness factors, develop improved systems for iPS cell derivation, and to perform synthetic lethal screens for anti-cancer drugs.
3. Reverse genetics using to identify and validate genes involved in cardiovascular physiology, brown and white fat cell development, and pain sensing.
4. Hit validation – exemplified by resistance to the bioweapon ricin.
Haploid embryonic stem cells carry the promise to revolutionize functional genetics and allow rapid, near whole genome-wide mutational forward genetics analysis and reverse genetics in defined cell types. Our systems will be made available to all researchers and the knowledge gained from our studies should fundamentally impact on the basic understanding of physiology and disease pathogenesis."
Max ERC Funding
2 499 951 €
Duration
Start date: 2014-02-01, End date: 2019-01-31