Project acronym AnCon
Project A Comparative Anthropology of Conscience, Ethics and Human Rights
Researcher (PI) Tobias William Kelly
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Country United Kingdom
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Summary
This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Max ERC Funding
1 457 869 €
Duration
Start date: 2015-08-01, End date: 2021-01-31
Project acronym CC
Project Combinatorial Construction
Researcher (PI) Peter Keevash
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Summary
Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Max ERC Funding
1 706 729 €
Duration
Start date: 2016-01-01, End date: 2021-06-30
Project acronym CNT-QUBIT
Project Carbon Nanotube Quantum Circuits
Researcher (PI) Mark Robertus Buitelaar
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Consolidator Grant (CoG), PE3, ERC-2014-CoG
Summary The aim of this proposal is to use spin qubits defined in carbon nanotube quantum dots to demonstrate measurement-based entanglement in an all-electrical and scalable solid-state architecture. The project makes use of spin-orbit interaction to drive spin rotations in the carbon nanotube host system and hyperfine interaction to store quantum information in the nuclear spin states. The proposal builds on techniques developed by the principal investigator for fast and non-invasive read-out of the electron spin qubits using radio-frequency reflectometry and spin-to-charge conversion.
Any quantum computer requires entanglement. One route to achieve entanglement between electron spin qubits in quantum dots is to use the direct interaction of neighbouring qubits due to their electron wavefunction overlap. This approach, however, becomes rapidly impractical for any large scale quantum processor, as distant qubits can only be entangled through the use of qubits in between. Here I propose an alternative strategy which makes use of an intriguing quantum mechanical effect by which two spatially separated spin qubits coupled to a single electrical resonator become entangled if a measurement cannot tell them apart.
The quantum information encoded in the entangled electron spin qubits will be transferred to carbon-13 nuclear spins which are used as a quantum memory with coherence times that exceed seconds. Entanglement with further qubits then proceeds again via projective measurements of the electron spin qubits without risk of losing the existing entanglement. When entanglement of the electron spin qubits is heralded – which might take several attempts – the quantum information is transferred again to the nuclear spin states. This allows for the coupling of large numbers of physically separated qubits, building up so-called graph or cluster states in an all-electrical and scalable solid-state architecture.
Summary
The aim of this proposal is to use spin qubits defined in carbon nanotube quantum dots to demonstrate measurement-based entanglement in an all-electrical and scalable solid-state architecture. The project makes use of spin-orbit interaction to drive spin rotations in the carbon nanotube host system and hyperfine interaction to store quantum information in the nuclear spin states. The proposal builds on techniques developed by the principal investigator for fast and non-invasive read-out of the electron spin qubits using radio-frequency reflectometry and spin-to-charge conversion.
Any quantum computer requires entanglement. One route to achieve entanglement between electron spin qubits in quantum dots is to use the direct interaction of neighbouring qubits due to their electron wavefunction overlap. This approach, however, becomes rapidly impractical for any large scale quantum processor, as distant qubits can only be entangled through the use of qubits in between. Here I propose an alternative strategy which makes use of an intriguing quantum mechanical effect by which two spatially separated spin qubits coupled to a single electrical resonator become entangled if a measurement cannot tell them apart.
The quantum information encoded in the entangled electron spin qubits will be transferred to carbon-13 nuclear spins which are used as a quantum memory with coherence times that exceed seconds. Entanglement with further qubits then proceeds again via projective measurements of the electron spin qubits without risk of losing the existing entanglement. When entanglement of the electron spin qubits is heralded – which might take several attempts – the quantum information is transferred again to the nuclear spin states. This allows for the coupling of large numbers of physically separated qubits, building up so-called graph or cluster states in an all-electrical and scalable solid-state architecture.
Max ERC Funding
1 998 574 €
Duration
Start date: 2015-09-01, End date: 2021-04-30
Project acronym COMPEN
Project Penal Policymaking and the prisoner experience: a comparative analysis
Researcher (PI) Benjamin Crewe
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary Recent years have seen renewed interest in the political economy of punishment, yet almost no attention has been given to the factors that translate socio-political arrangements into penal practices or the specific nature of imprisonment in different political-economic systems. Based on research in England & Wales and one Nordic nation, the project goals are to expose the dynamics of the penal state and the nature of penality in countries that are considered ‘exclusionary’ and ‘inclusionary’ respectively in their socio-economic and penal practices. These goals will be achieved through four comparative sub-projects: first, a study of penal policymaking and the ‘penal field’ (the players and processes that shape penal policy and practice); second, an exploration of the texture of imprisonment for women and sex offenders, groups presumed to experience inclusionary and exclusionary penal practices in distinctive ways; third, a study of how these prisoners experience entry into and exit from the system; fourth, a study of the ‘deep end’ imprisonment in both countries.
A central aim is to interrogate widespread assumptions about the relative mildness/severity of penal practices in inclusionary and exclusionary nations. The research will employ an emerging framework that conceptualises the prison experience through notions of ‘depth’, ‘weight’, ‘tightness’ and ‘breadth’. It will foreground the roles of shame and guilt in shaping prisoners’ orientations, concepts that feature in theories of offending and reintegration, but are absent from the sociology of imprisonment. Through the concept of ‘penal consciousness’, the project will also explore the interaction between the punitive intentions of the state and prisoners’ perceptions of the purposes and legitimacy of their punishment. The research will be groundbreaking in several ways, reshaping the field of comparative penology, and linking macro issues of the penal state with the lived realities of the prison landings.
Summary
Recent years have seen renewed interest in the political economy of punishment, yet almost no attention has been given to the factors that translate socio-political arrangements into penal practices or the specific nature of imprisonment in different political-economic systems. Based on research in England & Wales and one Nordic nation, the project goals are to expose the dynamics of the penal state and the nature of penality in countries that are considered ‘exclusionary’ and ‘inclusionary’ respectively in their socio-economic and penal practices. These goals will be achieved through four comparative sub-projects: first, a study of penal policymaking and the ‘penal field’ (the players and processes that shape penal policy and practice); second, an exploration of the texture of imprisonment for women and sex offenders, groups presumed to experience inclusionary and exclusionary penal practices in distinctive ways; third, a study of how these prisoners experience entry into and exit from the system; fourth, a study of the ‘deep end’ imprisonment in both countries.
A central aim is to interrogate widespread assumptions about the relative mildness/severity of penal practices in inclusionary and exclusionary nations. The research will employ an emerging framework that conceptualises the prison experience through notions of ‘depth’, ‘weight’, ‘tightness’ and ‘breadth’. It will foreground the roles of shame and guilt in shaping prisoners’ orientations, concepts that feature in theories of offending and reintegration, but are absent from the sociology of imprisonment. Through the concept of ‘penal consciousness’, the project will also explore the interaction between the punitive intentions of the state and prisoners’ perceptions of the purposes and legitimacy of their punishment. The research will be groundbreaking in several ways, reshaping the field of comparative penology, and linking macro issues of the penal state with the lived realities of the prison landings.
Max ERC Funding
1 964 948 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym COMPROP
Project Computational Propaganda: Investigating the Impact of Algorithms and Bots on Political Discourse in Europe
Researcher (PI) Philip Howard
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary Social media can have an impressive impact on civic engagement and political discourse. Yet increasingly we find political actors using digital media and automated scripts for social control. Computational propaganda—through bots, botnets, and algorithms—has become one of the most concerning impacts of technology innovation. Unfortunately, bot identification and impact analysis are among the most difficult research challenges facing the social and computer sciences.
COMPROP objectives are to advance a) rigorous social and computer science on bot use, b) critical theory on digital manipulation and political outcomes, c) our understanding of how social media propaganda impacts social movement organization and vitality. This project will innovate through i) “real-time” social and information science actively disseminated to journalists, researchers, policy experts and the interested public, ii) the first detailed data set of political bot activity, iii) deepened expertise through cultivation of a regional expert network able to detect bots and their impact in Europe.
COMPROP will achieve this through multi-method and reflexive work packages: 1) international qualitative fieldwork with teams of bot makers and computer scientists working to detect bots; 2a) construction of an original event data set of incidents of political bot use and 2b) treatment of the data set with fuzzy set and traditional statistics; 3) computational theory for detecting political bots and 4) a sustained dissemination strategy. This project will employ state-of-the-art “network ethnography” techniques, use the latest fuzzy set / qualitative comparative statistics, and advance computational theory on bot detection via cutting-edge algorithmic work enhanced by new crowd-sourcing techniques.
Political bots are already being deployed over social networks in Europe. COMPROP will put the best methods in social and computer science to work on the size of the problem and the possible solutions.
Summary
Social media can have an impressive impact on civic engagement and political discourse. Yet increasingly we find political actors using digital media and automated scripts for social control. Computational propaganda—through bots, botnets, and algorithms—has become one of the most concerning impacts of technology innovation. Unfortunately, bot identification and impact analysis are among the most difficult research challenges facing the social and computer sciences.
COMPROP objectives are to advance a) rigorous social and computer science on bot use, b) critical theory on digital manipulation and political outcomes, c) our understanding of how social media propaganda impacts social movement organization and vitality. This project will innovate through i) “real-time” social and information science actively disseminated to journalists, researchers, policy experts and the interested public, ii) the first detailed data set of political bot activity, iii) deepened expertise through cultivation of a regional expert network able to detect bots and their impact in Europe.
COMPROP will achieve this through multi-method and reflexive work packages: 1) international qualitative fieldwork with teams of bot makers and computer scientists working to detect bots; 2a) construction of an original event data set of incidents of political bot use and 2b) treatment of the data set with fuzzy set and traditional statistics; 3) computational theory for detecting political bots and 4) a sustained dissemination strategy. This project will employ state-of-the-art “network ethnography” techniques, use the latest fuzzy set / qualitative comparative statistics, and advance computational theory on bot detection via cutting-edge algorithmic work enhanced by new crowd-sourcing techniques.
Political bots are already being deployed over social networks in Europe. COMPROP will put the best methods in social and computer science to work on the size of the problem and the possible solutions.
Max ERC Funding
1 980 112 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DeFiNER
Project Nucleotide Excision Repair: Decoding its Functional Role in Mammals
Researcher (PI) Georgios Garinis
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Country Greece
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Summary
Genome maintenance, chromatin remodelling and transcription are tightly linked biological processes that are currently poorly understood and vastly unexplored. Nucleotide excision repair (NER) is a major DNA repair pathway that mammalian cells employ to maintain their genome intact and faithfully transmit it into their progeny. Besides cancer and aging, however, defects in NER give rise to developmental disorders whose clinical heterogeneity and varying severity can only insufficiently be explained by the DNA repair defect. Recent work reveals that NER factors play a role, in addition to DNA repair, in transcription and the three-dimensional organization of our genome. Indeed, NER factors are now known to function in the regulation of gene expression, the transcriptional reprogramming of pluripotent stem cells and the fine-tuning of growth hormones during mammalian development. In this regard, the non-random organization of our genome, chromatin and the process of transcription itself are expected to play paramount roles in how NER factors coordinate, prioritize and execute their distinct tasks during development and disease progression. At present, however, no solid evidence exists as to how NER is functionally involved in such complex processes, what are the NER-associated protein complexes and underlying gene networks or how NER factors operate within the complex chromatin architecture. This is primarily due to our difficulties in dissecting the diverse functional contributions of NER proteins in an intact organism. Here, we propose to use a unique series of knock-in, transgenic and NER progeroid mice to decode the functional role of NER in mammals, thus paving the way for understanding how genome maintenance pathways are connected to developmental defects and disease mechanisms in vivo.
Max ERC Funding
1 995 000 €
Duration
Start date: 2016-01-01, End date: 2021-06-30
Project acronym DesignerPores
Project Understanding and Designing Novel NanoPores
Researcher (PI) Ulrich Felix Keyser
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), PE3, ERC-2014-CoG
Summary Translocation of ions and molecules is ubiquitous in biology and technology. Despite the tremendous amount of technical development, biological systems are still much more sophisticated in exerting exquisite control over active and passive translocation through nanopores in membranes than their existing synthetic mimics. This proposal aims to build novel designer nanopores that can match naturally evolved systems. For this we have to control all three stages of translocation: 1) diffusion and entry into, 2) diffusion in, and 3) exit from the nanopore. To gain fundamental insight into the translocation process we will employ microfluidic channels combined with holographic optical tweezers. Results from the microscale model system will be directly translated to nanoscale pores built with DNA origami nanotechnology. Our microfluidic experiments will automatically track diffusing spherical and non-spherical particles in artificial channels. Facilitated membrane transport will be mimicked by holographic optical tweezers providing full control over the translocation process. We will clarify how translocation depends on particle-particle, particle-channel, and particle-channel-entrance interactions.
The generic principles discovered on the microscale will guide the design of artificial nanopores made by DNA origami self-assembly. Our DNA origami based designer nanopores will lead to a novel class of transporters for molecules, ions, and water through solid-state and lipid membranes. The project will generate a quantitative understanding of membrane transport processes, test existing theoretical models with unprecedented experimental control, and introduce a novel approach to design active and passive nanopores built from DNA.
Summary
Translocation of ions and molecules is ubiquitous in biology and technology. Despite the tremendous amount of technical development, biological systems are still much more sophisticated in exerting exquisite control over active and passive translocation through nanopores in membranes than their existing synthetic mimics. This proposal aims to build novel designer nanopores that can match naturally evolved systems. For this we have to control all three stages of translocation: 1) diffusion and entry into, 2) diffusion in, and 3) exit from the nanopore. To gain fundamental insight into the translocation process we will employ microfluidic channels combined with holographic optical tweezers. Results from the microscale model system will be directly translated to nanoscale pores built with DNA origami nanotechnology. Our microfluidic experiments will automatically track diffusing spherical and non-spherical particles in artificial channels. Facilitated membrane transport will be mimicked by holographic optical tweezers providing full control over the translocation process. We will clarify how translocation depends on particle-particle, particle-channel, and particle-channel-entrance interactions.
The generic principles discovered on the microscale will guide the design of artificial nanopores made by DNA origami self-assembly. Our DNA origami based designer nanopores will lead to a novel class of transporters for molecules, ions, and water through solid-state and lipid membranes. The project will generate a quantitative understanding of membrane transport processes, test existing theoretical models with unprecedented experimental control, and introduce a novel approach to design active and passive nanopores built from DNA.
Max ERC Funding
1 936 431 €
Duration
Start date: 2015-07-01, End date: 2021-06-30
Project acronym DiODe
Project Distributed Algorithms for Optimal Decision-Making
Researcher (PI) James Arthur Robert Marshall
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Country United Kingdom
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary This grant will develop and translate a unifying framework for optimal decision-theory, and observations of natural systems, to design distributed algorithms for decentralised decision-making. This will enable a technological step-change in techniques for controlling distributed systems, primarily demonstrated during the grant by decentralised control of robot swarms. These algorithms and associated methodology will also provide hypotheses and tools to change the way scientists think about and interrogate natural decision mechanisms, from intracellular regulatory networks, via neural decision circuits, to decision-making populations of animals. Specific objectives are:
1. Distributed value-sensitive decision-making: undertake optimality analyses of the applicant’s existing decentralised decision-making algorithms based on observations of collective iterated voting-processes in honeybees, and extend these.
2. Distributed sampling and decision-making: design distributed mechanisms that implement optimal compromises between sampling information and making decisions based on that information.
3. Individual-confidence and distributed decision-making: translate machine learning theory to collective behaviour models, designing mechanisms in which weak decision-makers optimally combine their decisions to optimise group performance.
4. Optimal distributed decision-making in collective robotics: translate theory from objective 1 to 3 towards practical applications in artificial systems, demonstrated using collectively-deciding robots.
5. Development of tools for life scientists and validation of theoretical predictions in natural systems: interact with named collaborators to investigate identified decision mechanisms in single cells, in neural circuits, and in social groups. Develop accessible modelling tools to facilitate investigations by life scientists.
Summary
This grant will develop and translate a unifying framework for optimal decision-theory, and observations of natural systems, to design distributed algorithms for decentralised decision-making. This will enable a technological step-change in techniques for controlling distributed systems, primarily demonstrated during the grant by decentralised control of robot swarms. These algorithms and associated methodology will also provide hypotheses and tools to change the way scientists think about and interrogate natural decision mechanisms, from intracellular regulatory networks, via neural decision circuits, to decision-making populations of animals. Specific objectives are:
1. Distributed value-sensitive decision-making: undertake optimality analyses of the applicant’s existing decentralised decision-making algorithms based on observations of collective iterated voting-processes in honeybees, and extend these.
2. Distributed sampling and decision-making: design distributed mechanisms that implement optimal compromises between sampling information and making decisions based on that information.
3. Individual-confidence and distributed decision-making: translate machine learning theory to collective behaviour models, designing mechanisms in which weak decision-makers optimally combine their decisions to optimise group performance.
4. Optimal distributed decision-making in collective robotics: translate theory from objective 1 to 3 towards practical applications in artificial systems, demonstrated using collectively-deciding robots.
5. Development of tools for life scientists and validation of theoretical predictions in natural systems: interact with named collaborators to investigate identified decision mechanisms in single cells, in neural circuits, and in social groups. Develop accessible modelling tools to facilitate investigations by life scientists.
Max ERC Funding
1 413 705 €
Duration
Start date: 2015-08-01, End date: 2020-11-30
Project acronym ENSURE
Project Exploring the New Science and engineering unveiled by Ultraintense ultrashort Radiation interaction with mattEr
Researcher (PI) Matteo Passoni
Host Institution (HI) POLITECNICO DI MILANO
Country Italy
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary With the ENSURE project I aim at attaining ground-breaking results in the field of superintense laser-driven ion acceleration, proposing a multidisciplinary research program in which theoretical, numerical and experimental research will be coherently developed in a team integrating in an unprecedented way advanced expertise from materials engineering and nanotechnology, laser-plasma physics, computational science. The aim will be to bring this topic from the realm of fundamental basic science into a subject having realistic engineering applications.
The discovery in 2000 of brilliant, multi-MeV, collimated ion sources from targets irradiated by intense laser pulses stimulated great interest worldwide, due to the ultra-compact spatial scale of the accelerator and ion beam properties. The laser-target system provides unique appealing features to fundamental physics which can be studied in a small lab. At the same time, laser-ion beams could have future potential in many technological areas. This is boosting the development of new labs and facilities all over Europe, but to support these efforts, crucial challenges need to be faced to make these applications a reality.
The goals of ENSURE are: i) design and production of nanoengineered targets, with properties tailored to achieve optimized ion acceleration regimes. This will be pursued exploiting advanced techniques of material science & nanotechnology ii) design of laser-ion beams for novel, key applications in nuclear and materials engineering iii) realization of engineering-oriented ion acceleration experiments, in advanced facilities iv) synergic development of all the required theoretical support for i,ii,iii).
The results of the project can determine a unique impact in the research on laser-driven ion acceleration in Europe, providing new directions to support the attainment, in the next future, of concrete applications of great societal relevance, in medical, energy and materials areas.
Summary
With the ENSURE project I aim at attaining ground-breaking results in the field of superintense laser-driven ion acceleration, proposing a multidisciplinary research program in which theoretical, numerical and experimental research will be coherently developed in a team integrating in an unprecedented way advanced expertise from materials engineering and nanotechnology, laser-plasma physics, computational science. The aim will be to bring this topic from the realm of fundamental basic science into a subject having realistic engineering applications.
The discovery in 2000 of brilliant, multi-MeV, collimated ion sources from targets irradiated by intense laser pulses stimulated great interest worldwide, due to the ultra-compact spatial scale of the accelerator and ion beam properties. The laser-target system provides unique appealing features to fundamental physics which can be studied in a small lab. At the same time, laser-ion beams could have future potential in many technological areas. This is boosting the development of new labs and facilities all over Europe, but to support these efforts, crucial challenges need to be faced to make these applications a reality.
The goals of ENSURE are: i) design and production of nanoengineered targets, with properties tailored to achieve optimized ion acceleration regimes. This will be pursued exploiting advanced techniques of material science & nanotechnology ii) design of laser-ion beams for novel, key applications in nuclear and materials engineering iii) realization of engineering-oriented ion acceleration experiments, in advanced facilities iv) synergic development of all the required theoretical support for i,ii,iii).
The results of the project can determine a unique impact in the research on laser-driven ion acceleration in Europe, providing new directions to support the attainment, in the next future, of concrete applications of great societal relevance, in medical, energy and materials areas.
Max ERC Funding
1 887 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ER_disease
Project Defining hormonal cross-talk and the role of mutations in estrogen receptor positive breast cancer
Researcher (PI) Jason Scott Carroll
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Summary
Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Max ERC Funding
1 987 274 €
Duration
Start date: 2015-06-01, End date: 2020-05-31