Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ARYLATOR
Project New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation
Researcher (PI) Guy Charles Lloyd-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Summary
This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Max ERC Funding
2 114 223 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIO-H-BORROW
Project Biocatalytic Amine Synthesis via Hydrogen Borrowing
Researcher (PI) Nicholas TURNER
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Summary
Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Max ERC Funding
2 337 548 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym BIOINCMED
Project Bioinorganic Chemistry for the Design of New Medicines
Researcher (PI) Peter John Sadler
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), PE5, ERC-2009-AdG
Summary Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Summary
Bioinorganic chemistry is a rapidly expanding area of research, but the potential for the therapeutic application of metal complexes is highly underdeveloped. The basic principles required to guide the development of metal-containing therapeutic agents are lacking, despite the unique therapeutic opportunities which they offer. It is the goal of the proposed research to establish basic principles of medicinal coordination chemistry of metals that will allow the rational screening of future metallopharmaceuticals. We propose to utilize the power of inorganic chemistry to provide new knowledge of and new approaches for intervention in biological systems. This will be based on improved understanding of reactions of metal complexes under physiological conditions, on improving the specificity of their interactions, and gaining control over the potential toxicity of synthetic metal complexes. The research programme is highly interdisciplinary involving chemistry, physics, biology and pharmacology, with potential for the discovery of truly novel medicines, especially for the treatment of diseases and conditions which are currently intractable, such as cancer. The challenging and ambitious goals of the present work involve transition metal complexes with novel chemical and biochemical mechanisms of action. They will contain novel features which allow them (i) to be selectively activated by light in cells, or (ii) to be activated by a structural transition, or (ii) exhibit catalytic activity in cells. This ground-breaking research potentially has a very high impact and is based on recent discoveries in the applicant s laboratory. A feature of the programme is the use of state-of-the-art-and-beyond methodology to advance knowledge of medicinal metal coordination chemistry.
Max ERC Funding
1 565 397 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym BioMet
Project Selective Functionalization of Saturated Hydrocarbons
Researcher (PI) Ilan MAREK
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Summary
Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Max ERC Funding
2 499 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CMetC
Project Selective Carbon-Carbon Bond Activation: A Wellspring of Untapped Reactivity
Researcher (PI) Ilan Marek
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. Most –if not all- of the efforts of organic chemists were directed to the development of creative strategies to built carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. But is the creation of new bonds the only approach that organic chemistry should follow? Could we design the synthesis of challenging molecular skeleton no more through the construction of carbon-carbon bonds but rather through selective cleavage of carbon-carbon bonds (C-C bond activation)? The goal of this work is to develop powerful synthetic approaches for the selective C-C bond activation and demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo- and even enantiomerically enriched preparation of adducts despite that C-C single bonds belong among the least reactive functional groups in chemistry. The realization of this synthetic potential requires the ability to functionalize selectively one C-C bond in compounds containing many such bonds and an array of functional groups. This site selective C-C bond activation is one of the greatest challenges that must be met to be used widely in complex-molecular synthesis. To emphasize the practicality of C-C bond activation, we will prepare in a single-pot operation challenging molecular framework possessing various stereogenic centers from very simple starting materials through selective C-C bond activation. Ideally, alkenes will be in-situ transformed into alkanes that will subsequently undergo the C-C activation even in the presence of functional group. This work will lead to ground-breaking advances when non-strained cycloalkanes (cyclopentane, cyclohexane) will undergo this smooth C-C bond activation with friendly and non toxic organometallic species.
Summary
The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. Most –if not all- of the efforts of organic chemists were directed to the development of creative strategies to built carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. But is the creation of new bonds the only approach that organic chemistry should follow? Could we design the synthesis of challenging molecular skeleton no more through the construction of carbon-carbon bonds but rather through selective cleavage of carbon-carbon bonds (C-C bond activation)? The goal of this work is to develop powerful synthetic approaches for the selective C-C bond activation and demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo- and even enantiomerically enriched preparation of adducts despite that C-C single bonds belong among the least reactive functional groups in chemistry. The realization of this synthetic potential requires the ability to functionalize selectively one C-C bond in compounds containing many such bonds and an array of functional groups. This site selective C-C bond activation is one of the greatest challenges that must be met to be used widely in complex-molecular synthesis. To emphasize the practicality of C-C bond activation, we will prepare in a single-pot operation challenging molecular framework possessing various stereogenic centers from very simple starting materials through selective C-C bond activation. Ideally, alkenes will be in-situ transformed into alkanes that will subsequently undergo the C-C activation even in the presence of functional group. This work will lead to ground-breaking advances when non-strained cycloalkanes (cyclopentane, cyclohexane) will undergo this smooth C-C bond activation with friendly and non toxic organometallic species.
Max ERC Funding
2 367 495 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym COMPLEXORDER
Project The Complexity Revolution: Exploiting Unconventional Order in Next-Generation Materials Design
Researcher (PI) Andrew GOODWIN
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Summary
The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Max ERC Funding
3 362 635 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym COORDSPACE
Project Chemistry of Coordination Space: Extraction, Storage, Activation and Catalysis
Researcher (PI) Martin Schroder
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Advanced Grant (AdG), PE5, ERC-2008-AdG
Summary The Applicant has an outstanding record of achievement and an international reputation for independent research across many areas of metal coordination chemistry. This high-impact and challenging Proposal brings together innovative ideas in coordination chemistry within a single inter- and multi-disciplinary project to open up new horizons across molecular and biological sciences, materials science and energy research. The Proposal applies coordination chemistry to the key issues of climate change, environmental and chemical sustainability, the Hydrogen Economy, carbon capture and fuel cell technologies, and atom-efficient metal extraction and clean-up. The vision is to bring together complementary areas and new applications of metal coordination chemistry and ligand design within an overarching and fundamental research program addressing: i. nanoscale functionalized framework polymers for the storage and activation of H2, CO2, CO, O2, N2, methane and volatile organic compounds; ii. new catalysts for the reversible oxidation and photochemical production of H2; iii) clean and selective recovery of precious metals (Pt, Pd, Rh, Ir, Hf, Zr) from process streams and ores. These research themes will be consolidated within a single cross-disciplinary and ambitious program focusing on the control of chemistry, reactivity and interactions within self-assembled confined and multi-functionalized space generated by designer porous framework materials. An AdG will afford the impetus and freedom via consolidated funding to undertake fundamental, speculative research with multiple potential big-hits across a wide range of disciplines. Via an extensive network of international academic and industrial collaborations, the Applicant will deliver major research breakthroughs in these vital areas, and train scientists for the future of Europe in an exciting, stimulating and curiosity-driven environment.
Summary
The Applicant has an outstanding record of achievement and an international reputation for independent research across many areas of metal coordination chemistry. This high-impact and challenging Proposal brings together innovative ideas in coordination chemistry within a single inter- and multi-disciplinary project to open up new horizons across molecular and biological sciences, materials science and energy research. The Proposal applies coordination chemistry to the key issues of climate change, environmental and chemical sustainability, the Hydrogen Economy, carbon capture and fuel cell technologies, and atom-efficient metal extraction and clean-up. The vision is to bring together complementary areas and new applications of metal coordination chemistry and ligand design within an overarching and fundamental research program addressing: i. nanoscale functionalized framework polymers for the storage and activation of H2, CO2, CO, O2, N2, methane and volatile organic compounds; ii. new catalysts for the reversible oxidation and photochemical production of H2; iii) clean and selective recovery of precious metals (Pt, Pd, Rh, Ir, Hf, Zr) from process streams and ores. These research themes will be consolidated within a single cross-disciplinary and ambitious program focusing on the control of chemistry, reactivity and interactions within self-assembled confined and multi-functionalized space generated by designer porous framework materials. An AdG will afford the impetus and freedom via consolidated funding to undertake fundamental, speculative research with multiple potential big-hits across a wide range of disciplines. Via an extensive network of international academic and industrial collaborations, the Applicant will deliver major research breakthroughs in these vital areas, and train scientists for the future of Europe in an exciting, stimulating and curiosity-driven environment.
Max ERC Funding
2 492 372 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym CoSuN
Project Cooperative Phenomena in Supramolecular Nanostructures
Researcher (PI) Harry Laurence Anderson
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE5, ERC-2012-ADG_20120216
Summary Many of the remarkable properties of molecular nanostructures are cooperative effects. A system is described as cooperative when it behaves differently from expectations based on the properties of its individual components. Multivalent cooperativity is crucial for biological molecular recognition, yet the factors determining the magnitude of this effect are poorly understood. Excitonic cooperativity is exploited in sensitive detectors for explosives, and is the basis of photosynthetic light harvesting. Electronic cooperativity is illustrated on the molecular scale by the phenomenon of aromaticity, and on a larger scale by metallic conductivity. Magnetic properties provide many examples of cooperativity. The magnitude of cooperative effects increases with the strength of coupling between the individual components, and with the number of coupled components. Cooperative systems exhibit sharp changes in behavior in response to small changes in conditions, such as transitions from free to bound, fluorescent to non-fluorescent, or conductive to insulating. The tendency towards an “all-or-nothing” response is often useful; in the limit of a very large ensemble, it leads to phase transitions. The CoSuN project will extend methodology developed in Oxford to create large monodisperse supramolecular nanostructures which are uniquely suited for exploring multivalent, excitonic and electronic cooperativity. The template-directed synthesis of these nanostructures is made possible by strong multivalent cooperativity, while the electronic coupling between the individual subunits results in other cooperative phenomena. This project will clarify understanding of cooperative molecular recognition. It will also help to solve some of the mysteries of photosynthesis and reveal the first molecular manifestations of coherent quantum mechanical phenomena, such as Aharonov-Bohm effects.
Summary
Many of the remarkable properties of molecular nanostructures are cooperative effects. A system is described as cooperative when it behaves differently from expectations based on the properties of its individual components. Multivalent cooperativity is crucial for biological molecular recognition, yet the factors determining the magnitude of this effect are poorly understood. Excitonic cooperativity is exploited in sensitive detectors for explosives, and is the basis of photosynthetic light harvesting. Electronic cooperativity is illustrated on the molecular scale by the phenomenon of aromaticity, and on a larger scale by metallic conductivity. Magnetic properties provide many examples of cooperativity. The magnitude of cooperative effects increases with the strength of coupling between the individual components, and with the number of coupled components. Cooperative systems exhibit sharp changes in behavior in response to small changes in conditions, such as transitions from free to bound, fluorescent to non-fluorescent, or conductive to insulating. The tendency towards an “all-or-nothing” response is often useful; in the limit of a very large ensemble, it leads to phase transitions. The CoSuN project will extend methodology developed in Oxford to create large monodisperse supramolecular nanostructures which are uniquely suited for exploring multivalent, excitonic and electronic cooperativity. The template-directed synthesis of these nanostructures is made possible by strong multivalent cooperativity, while the electronic coupling between the individual subunits results in other cooperative phenomena. This project will clarify understanding of cooperative molecular recognition. It will also help to solve some of the mysteries of photosynthesis and reveal the first molecular manifestations of coherent quantum mechanical phenomena, such as Aharonov-Bohm effects.
Max ERC Funding
2 452 688 €
Duration
Start date: 2013-05-01, End date: 2018-04-30