Project acronym ASTONISH
Project Atomic-scale STudies Of the Nature of and conditions for Inducing Superconductivity at High-temperatures
Researcher (PI) Roland Martin Wiesendanger
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary "One of the greatest challenges these days in condensed matter physics is the fundamental understanding of the mechanisms leading to high-Tc superconductivity and ultimately, as a result of that, the discovery of a material system exhibiting a superconducting state with a transition temperature Tc above room temperature. While several different classes of high-Tc materials have been discovered in the past decades, including the well-known CuO-based superconductors (cuprates) or the more recently discovered class of Fe-based superconductors (pnictides), the mechanisms behind high-Tc superconductivity remain controversial. Up to date, no theory exists which would allow for a rational design of a superconducting material with a transition temperature above room temperature. On the other hand, experiments on rather complex material systems often suffer from material imperfections or from a lack of tunability of materials’ properties within a wide range. Our experimental studies within this project therefore will focus on model-type systems which can be prepared and thoroughly characterized with atomic level precision. The growth of the model-type samples will be controlled vertically one atomic layer at a time and laterally by making use of single-atom manipulation techniques. Atomic-scale characterization at low energy-scales will be performed by low-temperature spin-resolved elastic and inelastic scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by non-contact atomic force microscopy and spectroscopy based techniques. Transport experiments will be conducted by a four-probe STM setup under well-defined ultra-high vacuum conditions. By having access to the electronic and spin, as well as to the vibrational degrees of freedom down to the atomic level, we hope to be able to identify the nature of and the conditions for inducing superconductivity at high temperatures, which could ultimately lead a knowledge-based design of high-Tc superconductors."
Summary
"One of the greatest challenges these days in condensed matter physics is the fundamental understanding of the mechanisms leading to high-Tc superconductivity and ultimately, as a result of that, the discovery of a material system exhibiting a superconducting state with a transition temperature Tc above room temperature. While several different classes of high-Tc materials have been discovered in the past decades, including the well-known CuO-based superconductors (cuprates) or the more recently discovered class of Fe-based superconductors (pnictides), the mechanisms behind high-Tc superconductivity remain controversial. Up to date, no theory exists which would allow for a rational design of a superconducting material with a transition temperature above room temperature. On the other hand, experiments on rather complex material systems often suffer from material imperfections or from a lack of tunability of materials’ properties within a wide range. Our experimental studies within this project therefore will focus on model-type systems which can be prepared and thoroughly characterized with atomic level precision. The growth of the model-type samples will be controlled vertically one atomic layer at a time and laterally by making use of single-atom manipulation techniques. Atomic-scale characterization at low energy-scales will be performed by low-temperature spin-resolved elastic and inelastic scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as by non-contact atomic force microscopy and spectroscopy based techniques. Transport experiments will be conducted by a four-probe STM setup under well-defined ultra-high vacuum conditions. By having access to the electronic and spin, as well as to the vibrational degrees of freedom down to the atomic level, we hope to be able to identify the nature of and the conditions for inducing superconductivity at high temperatures, which could ultimately lead a knowledge-based design of high-Tc superconductors."
Max ERC Funding
2 170 696 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym CellMechanoControl
Project The physical basis of cellular mechanochemical
control circuits
Researcher (PI) Christoph Friedrich Schmidt
Host Institution (HI) GEORG-AUGUST-UNIVERSITAT GOTTINGENSTIFTUNG OFFENTLICHEN RECHTS
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary Biological cells possess a chemical “sense of smell” and a physical “sense of touch”. Structure, dynamics, development, differentiation and even apoptosis of cells are guided by physical stimuli feeding into a regulatory network integrating biochemical and mechanical signals. Cells are equipped with both, force-generating structures, and stress sensors including force-sensitive structural proteins or mechanosensitive ion channels. Pathways from force sensing to structural and transcriptional controls are not yet understood.
The goal of the proposed interdisciplinary project is to quantitatively establish such pathways, connecting the statistical physics and the mechanics to the biochemistry. We will measure and model the complex non-equilibrium mechanical structures in cells, and we will study how external and cell-generated forces activate sensory processes that (i) act (back) on the morphology of the cell structures, and (ii) lead to cell-fate decisions, such as differentiation. The most prominent stress-bearing and -generating structures in cells are actin/myosin based, and the most prominent mechanoactive and -sensitive cell types are fibroblasts in connective tissue and myocytes in muscle. We will first focus on actin/myosin bundles in fibroblasts and in sarcomeres in developing heart muscle cells. We will observe cells under the influence of exactly controlled external stresses. Forces on suspended single cells or cell clusters will be exerted by laser trapping and sensitively detected by laser interferometry. We furthermore will monitor mechanically triggered transcriptional regulation by detecting mRNA in the nucleus of mouse stem cells differentiating to cardiomyocytes. We will develop fluorescent mRNA sensors that can be imaged in cells, based on near-IR fluorescent single-walled carbon nanotubes.
Understanding mechanical cell regulation has far-ranging relevance for fundamental cell biophysics, developmental biology and for human health.
Summary
Biological cells possess a chemical “sense of smell” and a physical “sense of touch”. Structure, dynamics, development, differentiation and even apoptosis of cells are guided by physical stimuli feeding into a regulatory network integrating biochemical and mechanical signals. Cells are equipped with both, force-generating structures, and stress sensors including force-sensitive structural proteins or mechanosensitive ion channels. Pathways from force sensing to structural and transcriptional controls are not yet understood.
The goal of the proposed interdisciplinary project is to quantitatively establish such pathways, connecting the statistical physics and the mechanics to the biochemistry. We will measure and model the complex non-equilibrium mechanical structures in cells, and we will study how external and cell-generated forces activate sensory processes that (i) act (back) on the morphology of the cell structures, and (ii) lead to cell-fate decisions, such as differentiation. The most prominent stress-bearing and -generating structures in cells are actin/myosin based, and the most prominent mechanoactive and -sensitive cell types are fibroblasts in connective tissue and myocytes in muscle. We will first focus on actin/myosin bundles in fibroblasts and in sarcomeres in developing heart muscle cells. We will observe cells under the influence of exactly controlled external stresses. Forces on suspended single cells or cell clusters will be exerted by laser trapping and sensitively detected by laser interferometry. We furthermore will monitor mechanically triggered transcriptional regulation by detecting mRNA in the nucleus of mouse stem cells differentiating to cardiomyocytes. We will develop fluorescent mRNA sensors that can be imaged in cells, based on near-IR fluorescent single-walled carbon nanotubes.
Understanding mechanical cell regulation has far-ranging relevance for fundamental cell biophysics, developmental biology and for human health.
Max ERC Funding
2 425 200 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym COREFEAR
Project Functional wiring of the core neural network of innate fear
Researcher (PI) Cornelius Gross
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary Fear is an emotion that exerts powerful effects on our behavior and physiology. A large body of research implicates the amygdala in fear of painful stimuli, but virtually nothing is known about the circuits that support fear of predators and social threats, despite their primal importance in human behavior and pathology. Unlike painful stimuli, predator and social threats activate the medial hypothalamus, a cluster of highly conserved brain nuclei that control motivated behavior. Intriguingly, predator and social threats recruit largely non-overlapping nuclei in the medial hypothalamus, and we have recently demonstrated that separate medial hypothalamic circuits are essential for predator and social fear. We aim to build a functional wiring diagram of predator and social fear in the mouse that will explain how these fears are triggered, coordinated, and remembered. Such a functional wiring diagram will reveal the network logic of innate fear and put us in a position to selectively intervene in fear processing. Electrical stimulation of the medial hypothalamus in humans elicits panic responses and pharmacological agents that block these circuits will offer unexplored therapeutic approaches to treat anxiety disorders such as panic, social phobia, and post-traumatic stress disorder. Moreover, the relatively simple architecture of the medial hypothalamic fear network and its robust and direct behavioral readout in the mouse will be a powerful platform to test the role of several fundamental circuit features that are common to a wide range of behavioral networks, but whose function remains unknown, including the role of feedback loops, sparse cellular encoding of behavior, and overlapping processing of distinct behavioral responses. In this way, the project will provide the first circuit-level understanding of predator and social fear and answer a series of fundamental questions about how neural networks control behavior.
Summary
Fear is an emotion that exerts powerful effects on our behavior and physiology. A large body of research implicates the amygdala in fear of painful stimuli, but virtually nothing is known about the circuits that support fear of predators and social threats, despite their primal importance in human behavior and pathology. Unlike painful stimuli, predator and social threats activate the medial hypothalamus, a cluster of highly conserved brain nuclei that control motivated behavior. Intriguingly, predator and social threats recruit largely non-overlapping nuclei in the medial hypothalamus, and we have recently demonstrated that separate medial hypothalamic circuits are essential for predator and social fear. We aim to build a functional wiring diagram of predator and social fear in the mouse that will explain how these fears are triggered, coordinated, and remembered. Such a functional wiring diagram will reveal the network logic of innate fear and put us in a position to selectively intervene in fear processing. Electrical stimulation of the medial hypothalamus in humans elicits panic responses and pharmacological agents that block these circuits will offer unexplored therapeutic approaches to treat anxiety disorders such as panic, social phobia, and post-traumatic stress disorder. Moreover, the relatively simple architecture of the medial hypothalamic fear network and its robust and direct behavioral readout in the mouse will be a powerful platform to test the role of several fundamental circuit features that are common to a wide range of behavioral networks, but whose function remains unknown, including the role of feedback loops, sparse cellular encoding of behavior, and overlapping processing of distinct behavioral responses. In this way, the project will provide the first circuit-level understanding of predator and social fear and answer a series of fundamental questions about how neural networks control behavior.
Max ERC Funding
2 493 839 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym HippoKAR
Project Understanding the roles of kainate receptors in the hippocampus
Researcher (PI) Graham Leon Collingridge
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary Kainate receptors (KARs) are often regarded as the last frontier of glutamate receptor research, since much less is known about their physiological roles compared with that of the other glutamate receptor subtypes. This field of research is very important not just because of the unique role that KARs play in neuronal function, including specific forms of synaptic plasticity, but because of the increasing evidence that KARs are involved in a plethora of brain diseases and that KAR antagonists are promising novel therapeutic targets. I propose to lead a highly multidisciplinary approach, in collaboration with colleagues at Bristol and strategic collaborators worldwide, to develop novel pharmacological and genetic tools, which will be rapidly disseminated to the neuroscience community. These tools will be used here to test hypotheses regarding functions of KARs in granule cells (GCs) in the dentate gyrus of the hippocampal formation, with a focus on mossy fibre long-term potentiation (LTP). We propose four interrelated objectives: (i) to develop potent and selective antagonists for the GluK2 subunit of KARs, (ii) to generate GC specific knockouts of the five KAR subunits, by floxing GluK1-5 and crossing with a GC-specific Cre recombinase mouse line, (iii) to use these and existing tools in a combined pharmacological and genetic approach, to understand the functions of KARs at mossy fibre synapses in acute and organotypic hippocampal slices. A new development will be to record simultaneously from synaptically coupled GC-CA3 neuronal pairs and to image Ca2+ from participating mossy fibre boutons, (iv) to extend these investigations to the study of mossy fibre function, in particular LTP, in anaesthetised animals and to establish the function of mossy fibre LTP in hippocampus-dependent learning and memory. Although highly ambitious, the proposal is based on a long track record of KAR research by the PI and his collaborators plus a substantial amount of preliminary data.
Summary
Kainate receptors (KARs) are often regarded as the last frontier of glutamate receptor research, since much less is known about their physiological roles compared with that of the other glutamate receptor subtypes. This field of research is very important not just because of the unique role that KARs play in neuronal function, including specific forms of synaptic plasticity, but because of the increasing evidence that KARs are involved in a plethora of brain diseases and that KAR antagonists are promising novel therapeutic targets. I propose to lead a highly multidisciplinary approach, in collaboration with colleagues at Bristol and strategic collaborators worldwide, to develop novel pharmacological and genetic tools, which will be rapidly disseminated to the neuroscience community. These tools will be used here to test hypotheses regarding functions of KARs in granule cells (GCs) in the dentate gyrus of the hippocampal formation, with a focus on mossy fibre long-term potentiation (LTP). We propose four interrelated objectives: (i) to develop potent and selective antagonists for the GluK2 subunit of KARs, (ii) to generate GC specific knockouts of the five KAR subunits, by floxing GluK1-5 and crossing with a GC-specific Cre recombinase mouse line, (iii) to use these and existing tools in a combined pharmacological and genetic approach, to understand the functions of KARs at mossy fibre synapses in acute and organotypic hippocampal slices. A new development will be to record simultaneously from synaptically coupled GC-CA3 neuronal pairs and to image Ca2+ from participating mossy fibre boutons, (iv) to extend these investigations to the study of mossy fibre function, in particular LTP, in anaesthetised animals and to establish the function of mossy fibre LTP in hippocampus-dependent learning and memory. Although highly ambitious, the proposal is based on a long track record of KAR research by the PI and his collaborators plus a substantial amount of preliminary data.
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MOLPROCOMP
Project From Structure Property to Structure Process Property Relations in Soft Matter – a Computational Physics Approach
Researcher (PI) Kurt Kremer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary "From cell biology to polymer photovoltaics, (self-)assembly processes that give rise to morphology and functionality result from non-equilibrium processes, which are driven by both, external forces, such as flow due to pressure gradients, inserting energy, or manipulation on a local molecular level, or internal forces, such as relaxation into a state of lower free energy. The resulting material is arrested in a metastable state. Most previous work has focused on the relationship between structure and properties, while insight into the guiding principles governing the formation of a (new) material, has been lacking. However, a comprehensive molecular level understanding of non-equilibrium assembly would allow for control and manipulation of material processes and their resulting properties. This lag of knowledge can be traced to the formidable challenge in obtaining a molecular picture of non-equilibrium assembly. Non-equilibrium processes have been studied extensively on a macroscopic level by non-equilibrium thermodynamics. We take a novel route approaching the challenge from a molecular point of view. Recent advances in experimental, but especially computational modeling, now allow to follow (supra-) molecular structural evolution across the range of length and time scales necessary to comprehend, and ultimately control and manipulate macroscopic functional properties of soft matter at the molecular level. Soft matter is particularly suited for that approach, as it is “slow” and easy to manipulate. We take the computational physics route, based on simulations on different levels of resolution (all atom, coarse grained, continuum) in combination with recent multiscale and adaptive resolution techniques. This work will initiate the way towards a paradigm change from conventional Structure Property Relations (SPR) to molecularly based Structure Process Property Relations (SPPR)."
Summary
"From cell biology to polymer photovoltaics, (self-)assembly processes that give rise to morphology and functionality result from non-equilibrium processes, which are driven by both, external forces, such as flow due to pressure gradients, inserting energy, or manipulation on a local molecular level, or internal forces, such as relaxation into a state of lower free energy. The resulting material is arrested in a metastable state. Most previous work has focused on the relationship between structure and properties, while insight into the guiding principles governing the formation of a (new) material, has been lacking. However, a comprehensive molecular level understanding of non-equilibrium assembly would allow for control and manipulation of material processes and their resulting properties. This lag of knowledge can be traced to the formidable challenge in obtaining a molecular picture of non-equilibrium assembly. Non-equilibrium processes have been studied extensively on a macroscopic level by non-equilibrium thermodynamics. We take a novel route approaching the challenge from a molecular point of view. Recent advances in experimental, but especially computational modeling, now allow to follow (supra-) molecular structural evolution across the range of length and time scales necessary to comprehend, and ultimately control and manipulate macroscopic functional properties of soft matter at the molecular level. Soft matter is particularly suited for that approach, as it is “slow” and easy to manipulate. We take the computational physics route, based on simulations on different levels of resolution (all atom, coarse grained, continuum) in combination with recent multiscale and adaptive resolution techniques. This work will initiate the way towards a paradigm change from conventional Structure Property Relations (SPR) to molecularly based Structure Process Property Relations (SPPR)."
Max ERC Funding
2 025 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MULTIGEVOS
Project The other side of optogenetics: multicolored genetically encoded hybrid voltage sensors (GEVOS) for ultrafast membrane potential measurements in cortical microcircuits
Researcher (PI) Istvan Mody
Host Institution (HI) UNIVERSITAETSKLINIKUM BONN
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary Optogenetics are used to activate or silence specific sets of neurons, intracellular signaling pathways, or to examine brain structure at an unprecedented detail. The only optogenetic approach lagging behind all others is the genetically encoded optical monitoring of multi-neuronal activity at a time resolution of single action potentials. Such ultrafast (<1 ms) resolution is important to understand network function in healthy and diseased nervous systems because timing of neuronal firing and synchrony are the foremost determinants of brain function. Techniques exist to measure membrane voltage and/or cellular activity using optical probes, but all have drawbacks either in their genetic targeting, optical sensitivity and/or temporal resolution. Recent developments using genetically encoded hybrid voltage sensor (GEVOS) methodology showed that this approach has an excellent potential to become an ultrafast voltage sensing system. The GEVOS technique can easily be adapted to work with multiple colors simultaneously, thus recording the activities of genetically distinct cell types in the same preparation. The overall objective of this proposal is to advance the GEVOS method so that it can be used with multiple colors simultaneously in at least two different genetically targetable cell types. Two major advances are sought after in this proposal: a technical/ methodological innovation (improve upon the GEVOS technique and extend it to two fluorescent proteins) and a scientific vision. The latter relates to gaining insights into the parallel functioning of local microcircuits and the optical recording of the concurrent behavior of pre- and postsynaptic elements during GABAergic inhibition. These studies will advance high temporal resolution optical voltage sensing (the other side of optogenetics) and will provide an unprecedented look at the functioning of cortical microcircuits with their specific components monitored at the same time..
Summary
Optogenetics are used to activate or silence specific sets of neurons, intracellular signaling pathways, or to examine brain structure at an unprecedented detail. The only optogenetic approach lagging behind all others is the genetically encoded optical monitoring of multi-neuronal activity at a time resolution of single action potentials. Such ultrafast (<1 ms) resolution is important to understand network function in healthy and diseased nervous systems because timing of neuronal firing and synchrony are the foremost determinants of brain function. Techniques exist to measure membrane voltage and/or cellular activity using optical probes, but all have drawbacks either in their genetic targeting, optical sensitivity and/or temporal resolution. Recent developments using genetically encoded hybrid voltage sensor (GEVOS) methodology showed that this approach has an excellent potential to become an ultrafast voltage sensing system. The GEVOS technique can easily be adapted to work with multiple colors simultaneously, thus recording the activities of genetically distinct cell types in the same preparation. The overall objective of this proposal is to advance the GEVOS method so that it can be used with multiple colors simultaneously in at least two different genetically targetable cell types. Two major advances are sought after in this proposal: a technical/ methodological innovation (improve upon the GEVOS technique and extend it to two fluorescent proteins) and a scientific vision. The latter relates to gaining insights into the parallel functioning of local microcircuits and the optical recording of the concurrent behavior of pre- and postsynaptic elements during GABAergic inhibition. These studies will advance high temporal resolution optical voltage sensing (the other side of optogenetics) and will provide an unprecedented look at the functioning of cortical microcircuits with their specific components monitored at the same time..
Max ERC Funding
3 437 138 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MUNATOP
Project Multi-Dimensional Study of non Abelian Topological States of Matter
Researcher (PI) Adiel (Ady) Stern
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary Non-abelian topological states of matter are of great interest in condensed matter physics,
both due to their extraordinary fundamental properties and to their possible use for quantum
computation. The insensitivity of their topological characteristics to disorder, noise,
and interaction with the environment may lead to realization of quantum computers with
very long coherence times. The realization of a quantum computer ranks among the foremost
outstanding problems in physics, particularly in light of the revolutionary rewards
the achievement of this goal promises.
The proposed theoretical study is multi-dimensional. On the methodological side the
multi-dimensionality is in the breadth of the studies we discuss, ranging all the way from
phenomenology to mathematical physics. We will aim at detailed understanding of present
and future experimental results. We will analyze experimental setups designed to identify,
characterize and manipulate non-abelian states. And we will propose and classify novel
non-abelian states. On the concrete side, the multi-dimensionality is literal. The systems
we consider include quantum dots, one dimensional quantum wires, two dimensional planar
systems, and surfaces of three dimensional systems.
Our proposal starts with Majorana fermions in systems where spin-orbit coupling, Zeeman
fields and proximity coupling to superconductivity are at play. It continues with “edge
anyons”, non-abelian quasiparticles residing on edges of abelian Quantum Hall states. It
ends with open issues in the physics of the Quantum Hall Effect.
We expect that this study will result in clear schemes for unquestionable experimental
identification of Majorana fermions, new predictions for more of their measurable consequences,
understanding of the feasibility of fractionalized phases in quantum wires, feasible
experimental schemes for realizing and observing edge anyons, steps towards their classification,
and better understanding of quantum Hall interferometry.
Summary
Non-abelian topological states of matter are of great interest in condensed matter physics,
both due to their extraordinary fundamental properties and to their possible use for quantum
computation. The insensitivity of their topological characteristics to disorder, noise,
and interaction with the environment may lead to realization of quantum computers with
very long coherence times. The realization of a quantum computer ranks among the foremost
outstanding problems in physics, particularly in light of the revolutionary rewards
the achievement of this goal promises.
The proposed theoretical study is multi-dimensional. On the methodological side the
multi-dimensionality is in the breadth of the studies we discuss, ranging all the way from
phenomenology to mathematical physics. We will aim at detailed understanding of present
and future experimental results. We will analyze experimental setups designed to identify,
characterize and manipulate non-abelian states. And we will propose and classify novel
non-abelian states. On the concrete side, the multi-dimensionality is literal. The systems
we consider include quantum dots, one dimensional quantum wires, two dimensional planar
systems, and surfaces of three dimensional systems.
Our proposal starts with Majorana fermions in systems where spin-orbit coupling, Zeeman
fields and proximity coupling to superconductivity are at play. It continues with “edge
anyons”, non-abelian quasiparticles residing on edges of abelian Quantum Hall states. It
ends with open issues in the physics of the Quantum Hall Effect.
We expect that this study will result in clear schemes for unquestionable experimental
identification of Majorana fermions, new predictions for more of their measurable consequences,
understanding of the feasibility of fractionalized phases in quantum wires, feasible
experimental schemes for realizing and observing edge anyons, steps towards their classification,
and better understanding of quantum Hall interferometry.
Max ERC Funding
1 529 107 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym NEUROGROWTH
Project Axonuclear Communication in Neuronal Growth Control
Researcher (PI) Michael Fainzilber
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary Neurons exhibit the most marked size differences and diversity in intrinsic growth rates of any class of cells. How then can a neuron coordinate between biosynthesis rates in the soma and the growth needs of different lengths of axons? The central hypothesis of this proposal is that neurons sense the lengths of the axonal microtubule cytoskeleton on an ongoing basis by bidirectional motor-dependent axon-nucleus communication, and that the oscillating retrograde signal generated by this mechanism provides input for the coordinated regulation of neuronal biosynthesis and axonal growth. We will test this hypothesis in a multidisciplinary work program that will characterize and quantify the link between biosynthesis levels and axon outgrowth rates and identify and validate the roles and functions of key molecules underlying this mechanism. This research program will elucidate how neuronal biosynthesis and axon growth are co-regulated. New mechanistic insights on this fundamental aspect of neuronal cell biology will have far-reaching implications. From the basic science perspective, this work will establish a new modality for encoding spatial information in biological signals, providing a one-dimensional solution to the three-dimensional problem of sensing cell size. Moreover, the proposed mechanism can explain intrinsic limits on regenerative neuronal growth and raises the intriguing possibility of opening new avenues to bypass such limits towards acceleration of axonal growth for effective neural repair.
Summary
Neurons exhibit the most marked size differences and diversity in intrinsic growth rates of any class of cells. How then can a neuron coordinate between biosynthesis rates in the soma and the growth needs of different lengths of axons? The central hypothesis of this proposal is that neurons sense the lengths of the axonal microtubule cytoskeleton on an ongoing basis by bidirectional motor-dependent axon-nucleus communication, and that the oscillating retrograde signal generated by this mechanism provides input for the coordinated regulation of neuronal biosynthesis and axonal growth. We will test this hypothesis in a multidisciplinary work program that will characterize and quantify the link between biosynthesis levels and axon outgrowth rates and identify and validate the roles and functions of key molecules underlying this mechanism. This research program will elucidate how neuronal biosynthesis and axon growth are co-regulated. New mechanistic insights on this fundamental aspect of neuronal cell biology will have far-reaching implications. From the basic science perspective, this work will establish a new modality for encoding spatial information in biological signals, providing a one-dimensional solution to the three-dimensional problem of sensing cell size. Moreover, the proposed mechanism can explain intrinsic limits on regenerative neuronal growth and raises the intriguing possibility of opening new avenues to bypass such limits towards acceleration of axonal growth for effective neural repair.
Max ERC Funding
2 498 040 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym NEUTRAL
Project Neutral Quasi-Particles in Mesoscopic Physics
Researcher (PI) Mordehai (Moty) Heiblum
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary I propose to study ‘neutral excitations’ in 2d and 1d electronic systems. Such excitations, rarely studied, are unique since they are chargeless but may carry energy. Being byproducts of electron interaction, they come in a few flavors: (i) Downstream modes in composite edge channels of the integer quantum Hall effect (IQHE) regime; (ii) Upstream modes in the fractional quantum Hall effect (FQHE) regime; and (iii) Zero energy Majorana states (localized or propagating quasi-particles), in non-abelian FQHE states and in 1d topological P-wave superconductors. My main interests in neutral modes in the QHE regime are: (a) Their direct association with the nature of the wavefunction of the quantum state; (b) Being excited when a charge mode is being partitioned (say, by a quantum point contact), they may play a prime role in dephasing interference of quasi-particles due to the energy they rob (in the partitioning process). As for detecting Majorana quasi-particles, and aside from the exciting physics, their non-abelian nature makes them attractive as building blocks in ‘decoherence resistant’ systems. Based on our acquired abilities, such as material growth, processing techniques, and sensitive measurement techniques, I plan to perform experiments, which include: thorough studies of downstream and upstream neutral modes via shot noise and thermoelectric current measurements; proving (or disproving) their involvement in dephasing fractionally charged quasi-particles; growing and processing structures that harbor Majorana states (in 1d nano-wires and in 2d FQHE regime; and, possibly, eventually, manipulate Majorana states (by coupling and braiding). Experiments will employ, e.g., ultra-low temperatures, sensitive shot noise measurements, cross-correlation of current fluctuations, and interference of quasi-particles (charge and neutral) in novel interferometers.
Summary
I propose to study ‘neutral excitations’ in 2d and 1d electronic systems. Such excitations, rarely studied, are unique since they are chargeless but may carry energy. Being byproducts of electron interaction, they come in a few flavors: (i) Downstream modes in composite edge channels of the integer quantum Hall effect (IQHE) regime; (ii) Upstream modes in the fractional quantum Hall effect (FQHE) regime; and (iii) Zero energy Majorana states (localized or propagating quasi-particles), in non-abelian FQHE states and in 1d topological P-wave superconductors. My main interests in neutral modes in the QHE regime are: (a) Their direct association with the nature of the wavefunction of the quantum state; (b) Being excited when a charge mode is being partitioned (say, by a quantum point contact), they may play a prime role in dephasing interference of quasi-particles due to the energy they rob (in the partitioning process). As for detecting Majorana quasi-particles, and aside from the exciting physics, their non-abelian nature makes them attractive as building blocks in ‘decoherence resistant’ systems. Based on our acquired abilities, such as material growth, processing techniques, and sensitive measurement techniques, I plan to perform experiments, which include: thorough studies of downstream and upstream neutral modes via shot noise and thermoelectric current measurements; proving (or disproving) their involvement in dephasing fractionally charged quasi-particles; growing and processing structures that harbor Majorana states (in 1d nano-wires and in 2d FQHE regime; and, possibly, eventually, manipulate Majorana states (by coupling and braiding). Experiments will employ, e.g., ultra-low temperatures, sensitive shot noise measurements, cross-correlation of current fluctuations, and interference of quasi-particles (charge and neutral) in novel interferometers.
Max ERC Funding
2 428 042 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym PHYSAPS
Project The Physics of Active Particle Suspensions
Researcher (PI) Wilson Che Kei Poon
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE3, ERC-2013-ADG
Summary ‘Active matter’ is matter that is intrinsically out of equilibrium. In particular, an ‘active suspension’ is made up of self-propelled particles or droplets dispersed in a liquid. Active matter is not in thermal equilibrium even in the absence of external driving, and display fascinating properties. Thus, e.g., a so- lution of the filament-forming protein actin and the ‘molecular motor’ protein myosin can ‘burn’ ATP as fuel to produce a gel that flows in the absence of any external pressure gradient; while a suspension of swimming bacteria can have a viscosity that is lower than that of the suspending liquid. There is yet no gener- ally accepted statistical mechanics of active matter, where the absence of detailed balance means that small differences in microscopic dynamics can in principle lead to very different macroscopic behaviour. Moreover, there is no a priori reason to believe that a reduced description in terms of just a few macroscopic parameters (such as effective temperature and density) is possible. I propose a systematic pro- gramme of experiments to discover when and how microscopic dynamics affect the macroscopic behaviour of active suspensions, whether any of their behaviour has analogues in suspensions of passive particles and droplets, and how activity can be described using coarse-grained variables. To ensure that the experiments can be tightly coupled to theory and simulations, I will use well-characterised, model systems of active particles. Developing model systems is therefore a subsidiary, but crucial, goal of my programme. Some of these systems will be designed to be as similar as possible in their passive properties, but quite distinct in terms of their microscopic dynamics – a ‘luxury’ that is typically only available to theo- rists and simulators. Experimenting with such model systems should reveal what phenomena are generic to activity, and what phenomena are specific to particular kinds of microscopic dynamics.
Summary
‘Active matter’ is matter that is intrinsically out of equilibrium. In particular, an ‘active suspension’ is made up of self-propelled particles or droplets dispersed in a liquid. Active matter is not in thermal equilibrium even in the absence of external driving, and display fascinating properties. Thus, e.g., a so- lution of the filament-forming protein actin and the ‘molecular motor’ protein myosin can ‘burn’ ATP as fuel to produce a gel that flows in the absence of any external pressure gradient; while a suspension of swimming bacteria can have a viscosity that is lower than that of the suspending liquid. There is yet no gener- ally accepted statistical mechanics of active matter, where the absence of detailed balance means that small differences in microscopic dynamics can in principle lead to very different macroscopic behaviour. Moreover, there is no a priori reason to believe that a reduced description in terms of just a few macroscopic parameters (such as effective temperature and density) is possible. I propose a systematic pro- gramme of experiments to discover when and how microscopic dynamics affect the macroscopic behaviour of active suspensions, whether any of their behaviour has analogues in suspensions of passive particles and droplets, and how activity can be described using coarse-grained variables. To ensure that the experiments can be tightly coupled to theory and simulations, I will use well-characterised, model systems of active particles. Developing model systems is therefore a subsidiary, but crucial, goal of my programme. Some of these systems will be designed to be as similar as possible in their passive properties, but quite distinct in terms of their microscopic dynamics – a ‘luxury’ that is typically only available to theo- rists and simulators. Experimenting with such model systems should reveal what phenomena are generic to activity, and what phenomena are specific to particular kinds of microscopic dynamics.
Max ERC Funding
2 491 601 €
Duration
Start date: 2014-02-01, End date: 2019-01-31