Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym ABLASE
Project Advanced Bioderived and Biocompatible Lasers
Researcher (PI) Malte Christian Gather
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), PE3, ERC-2014-STG
Summary Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Summary
Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Max ERC Funding
1 499 875 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ACCORD
Project Algorithms for Complex Collective Decisions on Structured Domains
Researcher (PI) Edith Elkind
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Summary
Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Max ERC Funding
1 395 933 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym AFRIGOS
Project African Governance and Space: Transport Corridors, Border Towns and Port Cities in Transition
Researcher (PI) Paul Christopher Nugent
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), SH2, ERC-2014-ADG
Summary AFRIGOS investigates the process of 'respacing' Africa, a political drive towards regional and continental integration, on the one hand, and the re-casting of Africa's engagement with the global economy, on the other. This is reflected in unprecedented levels of investment in physical and communications infrastructure, and the outsourcing of key functions of Customs, Immigration and security agencies. AFRIGOS poses the question of how far respacing is genuinely forging institutions that are facilitating or obstructing the movement of people and goods; that are enabling or preventing urban and border spaces from being more effectively and responsively governed; and that take into account the needs of African populations whose livelihoods are rooted in mobility and informality. The principal research questions are approached through a comparative study of port cities, border towns and other strategic nodes situated along the busiest transport corridors in East, Central, West and Southern Africa. These represent sites of remarkable dynamism and cosmopolitanism, which reflects their role in connecting African urban centres to each other and to other global cities.
AFRIGOS considers how governance 'assemblages' are forged at different scales and is explicitly comparative. It works through 5 connected Streams that address specific questions: 1. AGENDA-SETTING is concerned with policy (re-)formulation. 2. PERIPHERAL URBANISM examines governance in border towns and port cities. 3. BORDER WORKERS addresses everyday governance emerging through the interaction of officials and others who make their livelihoods from the border. 4. CONNECTIVE INFRASTRUCTURE looks as the transformative effects of new technologies. 5. PEOPLE & GOODS IN MOTION traces the passage of people and goods and the regimes of regulation to which they are subjected. AFRIGOS contributes to interdisciplinary research on borderland studies, multi-level governance and the everyday state.
Summary
AFRIGOS investigates the process of 'respacing' Africa, a political drive towards regional and continental integration, on the one hand, and the re-casting of Africa's engagement with the global economy, on the other. This is reflected in unprecedented levels of investment in physical and communications infrastructure, and the outsourcing of key functions of Customs, Immigration and security agencies. AFRIGOS poses the question of how far respacing is genuinely forging institutions that are facilitating or obstructing the movement of people and goods; that are enabling or preventing urban and border spaces from being more effectively and responsively governed; and that take into account the needs of African populations whose livelihoods are rooted in mobility and informality. The principal research questions are approached through a comparative study of port cities, border towns and other strategic nodes situated along the busiest transport corridors in East, Central, West and Southern Africa. These represent sites of remarkable dynamism and cosmopolitanism, which reflects their role in connecting African urban centres to each other and to other global cities.
AFRIGOS considers how governance 'assemblages' are forged at different scales and is explicitly comparative. It works through 5 connected Streams that address specific questions: 1. AGENDA-SETTING is concerned with policy (re-)formulation. 2. PERIPHERAL URBANISM examines governance in border towns and port cities. 3. BORDER WORKERS addresses everyday governance emerging through the interaction of officials and others who make their livelihoods from the border. 4. CONNECTIVE INFRASTRUCTURE looks as the transformative effects of new technologies. 5. PEOPLE & GOODS IN MOTION traces the passage of people and goods and the regimes of regulation to which they are subjected. AFRIGOS contributes to interdisciplinary research on borderland studies, multi-level governance and the everyday state.
Max ERC Funding
2 491 364 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ALKENoNE
Project Algal Lipids: the Key to Earth Now and aNcient Earth
Researcher (PI) Jaime Lynn Toney
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Summary
Alkenones are algal lipids that have been used for decades to reconstruct quantitative past sea surface temperature. Although alkenones are being discovered in an increasing number of lake sites worldwide, only two terrestrial temperature records have been reconstructed so far. The development of this research field is limited by the lack of interdisciplinary research that combines modern biological and ecological algal research with the organic geochemical techniques needed to develop a quantitative biomarker (or molecular fossil) for past lake temperatures. More research is needed for alkenones to become a widely used tool for reconstructing past terrestrial temperature change. The early career Principal Investigator has discovered a new lake alkenone-producing species of haptophyte algae that produces alkenones in high abundances both in the environment and in laboratory cultures. This makes the new species an ideal organism for developing a culture-based temperature calibration and exploring other potential environmental controls. In this project, alkenone production will be manipulated, and monitored using state-of-the-art photobioreactors with real-time detectors for cell density, light, and temperature. The latest algal culture and isolation techniques that are used in microalgal biofuel development will be applied to developing the lake temperature proxy. The objectives will be achieved through the analysis of 90 new Canadian lakes to develop a core-top temperature calibration across a large latitudinal and temperature gradient (Δ latitude = 5°, Δ spring surface temperature = 9°C). The results will be used to assess how regional palaeo-temperature (Uk37), palaeo-moisture (δDwax) and palaeo-evaporation (δDalgal) respond during times of past global warmth (e.g., Medieval Warm Period, 900-1200 AD) to find an accurate analogue for assessing future drought risk in the interior of Canada.
Max ERC Funding
940 883 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym AnCon
Project A Comparative Anthropology of Conscience, Ethics and Human Rights
Researcher (PI) Tobias William Kelly
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Summary
This project is a comparative anthropology of conscience, ethics and human rights. Numerous international human rights documents formally declare their commitment to protect freedom of conscience. But, what is conscience and how do we know it when we see it? How do we distinguish it from self-interest or fanaticism? And what happens when the concept, often associated with a distinct Christian or liberal history, travels across cultural boundaries? The project will examine the cultural conditions under which claims to conscience are made possible, and the types of claims that are most persuasive when doing so. The project addresses these issues through the comparative analysis of three case studies: British pacifists, Sri Lankan activists, and Soviet dissidents. These case studies have been carefully chosen to provide globally significant, but contrasting examples of contests over the implications of claims to conscience. If claims of conscience are often associated with a specifically liberal and Christian tradition, mid-twentieth century Britain can be said to stand at the centre of that tradition. Sri Lanka represents a particularly fraught post-colonial South Asian counterpoint, wracked by nationalist violence, and influenced by ethical traditions associated with forms of Hinduism and Buddhism. Soviet Russia represents a further contrast, a totalitarian regime, where atheism was the dominant ethical language. Finally, the project will return specifically to international human rights institutions, examining the history of the category of conscience in the UN human rights system. This project will be ground breaking, employing novel methods and analytical insights, in order to producing the first comparative analysis of the cultural and political salience of claims of conscience. In doing so, the research aims to transform our understandings of the limits and potentials of attempts to protect freedom of conscience.
Max ERC Funding
1 457 869 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym BlackHoleMaps
Project Mapping gravitational waves from collisions of black holes
Researcher (PI) Mark Douglas Hannam
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Summary
Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Max ERC Funding
1 998 009 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CatHet
Project New Catalytic Asymmetric Strategies for N-Heterocycle Synthesis
Researcher (PI) John Forwood Bower
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Medicinal chemistry requires more efficient and diverse methods for the asymmetric synthesis of chiral scaffolds. Over 60% of the world’s top selling small molecule drug compounds are chiral and, of these, approximately 80% are marketed as single enantiomers. There is a compelling correlation between drug candidate “chiral complexity” and the likelihood of progression to the marketplace. Surprisingly, and despite the tremendous advances made in catalysis over the past several decades, the “chiral complexity” of drug discovery libraries has actually decreased, while, at the same time, for the reasons mentioned above, the “chiral complexity” of marketed drugs has increased. Since the mid-1990s, there has been a notable acceleration of this “complexity divergence”. Consequently, there is now an urgent need to provide efficient processes that directly access privileged chiral scaffolds. It is our philosophy that catalysis holds the key here and new processes should be based upon platforms that can exert control over both absolute and relative stereochemistry. In this proposal we outline the development of a range of N-heteroannulation processes based upon the catalytic generation and trapping of unique or unusual classes of organometallic intermediate derived from transition metal insertion into C-C and C-N sigma-bonds. We will provide a variety of enabling methodologies and demonstrate applicability in flexible total syntheses of important natural product scaffolds. The processes proposed are synthetically flexible, operationally simple and amenable to asymmetric catalysis. Likely starting points, based upon preliminary results, will set the stage for the realisation of aspirational and transformative goals. Through the study of the organometallic intermediates involved here, there is potential to generalise these new catalytic manifolds, such that this research will transcend N heterocyclic chemistry to provide enabling methods for organic chemistry as a whole.
Summary
Medicinal chemistry requires more efficient and diverse methods for the asymmetric synthesis of chiral scaffolds. Over 60% of the world’s top selling small molecule drug compounds are chiral and, of these, approximately 80% are marketed as single enantiomers. There is a compelling correlation between drug candidate “chiral complexity” and the likelihood of progression to the marketplace. Surprisingly, and despite the tremendous advances made in catalysis over the past several decades, the “chiral complexity” of drug discovery libraries has actually decreased, while, at the same time, for the reasons mentioned above, the “chiral complexity” of marketed drugs has increased. Since the mid-1990s, there has been a notable acceleration of this “complexity divergence”. Consequently, there is now an urgent need to provide efficient processes that directly access privileged chiral scaffolds. It is our philosophy that catalysis holds the key here and new processes should be based upon platforms that can exert control over both absolute and relative stereochemistry. In this proposal we outline the development of a range of N-heteroannulation processes based upon the catalytic generation and trapping of unique or unusual classes of organometallic intermediate derived from transition metal insertion into C-C and C-N sigma-bonds. We will provide a variety of enabling methodologies and demonstrate applicability in flexible total syntheses of important natural product scaffolds. The processes proposed are synthetically flexible, operationally simple and amenable to asymmetric catalysis. Likely starting points, based upon preliminary results, will set the stage for the realisation of aspirational and transformative goals. Through the study of the organometallic intermediates involved here, there is potential to generalise these new catalytic manifolds, such that this research will transcend N heterocyclic chemistry to provide enabling methods for organic chemistry as a whole.
Max ERC Funding
1 548 738 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym CC
Project Combinatorial Construction
Researcher (PI) Peter Keevash
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Summary
Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Max ERC Funding
1 706 729 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym CNT-QUBIT
Project Carbon Nanotube Quantum Circuits
Researcher (PI) Mark Robertus Buitelaar
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE3, ERC-2014-CoG
Summary The aim of this proposal is to use spin qubits defined in carbon nanotube quantum dots to demonstrate measurement-based entanglement in an all-electrical and scalable solid-state architecture. The project makes use of spin-orbit interaction to drive spin rotations in the carbon nanotube host system and hyperfine interaction to store quantum information in the nuclear spin states. The proposal builds on techniques developed by the principal investigator for fast and non-invasive read-out of the electron spin qubits using radio-frequency reflectometry and spin-to-charge conversion.
Any quantum computer requires entanglement. One route to achieve entanglement between electron spin qubits in quantum dots is to use the direct interaction of neighbouring qubits due to their electron wavefunction overlap. This approach, however, becomes rapidly impractical for any large scale quantum processor, as distant qubits can only be entangled through the use of qubits in between. Here I propose an alternative strategy which makes use of an intriguing quantum mechanical effect by which two spatially separated spin qubits coupled to a single electrical resonator become entangled if a measurement cannot tell them apart.
The quantum information encoded in the entangled electron spin qubits will be transferred to carbon-13 nuclear spins which are used as a quantum memory with coherence times that exceed seconds. Entanglement with further qubits then proceeds again via projective measurements of the electron spin qubits without risk of losing the existing entanglement. When entanglement of the electron spin qubits is heralded – which might take several attempts – the quantum information is transferred again to the nuclear spin states. This allows for the coupling of large numbers of physically separated qubits, building up so-called graph or cluster states in an all-electrical and scalable solid-state architecture.
Summary
The aim of this proposal is to use spin qubits defined in carbon nanotube quantum dots to demonstrate measurement-based entanglement in an all-electrical and scalable solid-state architecture. The project makes use of spin-orbit interaction to drive spin rotations in the carbon nanotube host system and hyperfine interaction to store quantum information in the nuclear spin states. The proposal builds on techniques developed by the principal investigator for fast and non-invasive read-out of the electron spin qubits using radio-frequency reflectometry and spin-to-charge conversion.
Any quantum computer requires entanglement. One route to achieve entanglement between electron spin qubits in quantum dots is to use the direct interaction of neighbouring qubits due to their electron wavefunction overlap. This approach, however, becomes rapidly impractical for any large scale quantum processor, as distant qubits can only be entangled through the use of qubits in between. Here I propose an alternative strategy which makes use of an intriguing quantum mechanical effect by which two spatially separated spin qubits coupled to a single electrical resonator become entangled if a measurement cannot tell them apart.
The quantum information encoded in the entangled electron spin qubits will be transferred to carbon-13 nuclear spins which are used as a quantum memory with coherence times that exceed seconds. Entanglement with further qubits then proceeds again via projective measurements of the electron spin qubits without risk of losing the existing entanglement. When entanglement of the electron spin qubits is heralded – which might take several attempts – the quantum information is transferred again to the nuclear spin states. This allows for the coupling of large numbers of physically separated qubits, building up so-called graph or cluster states in an all-electrical and scalable solid-state architecture.
Max ERC Funding
1 998 574 €
Duration
Start date: 2015-09-01, End date: 2020-08-31