Project acronym BactInd
Project Bacterial cooperation at the individual cell level
Researcher (PI) Rolf Kümmerli
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Summary
All levels of life entail cooperation and conflict. Genes cooperate to build up a functional genome, which can yet be undermined by selfish genetic elements. Humans and animals cooperate to build up societies, which can yet be subverted by cheats. There is a long-standing interest among biologists to comprehend the tug-of-war between cooperation and conflict. Recently, research on bacteria was successful in identifying key factors that can tip the balance in favour or against cooperation. Bacteria cooperate through the formation of protective biofilms, cell-to-cell communication, and the secretion of shareable public goods. However, the advantage of bacteria being fast replicating units, easily cultivatable in high numbers, is also their disadvantage: they are small and imperceptible, such that measures of cooperation typically rely on averaged responses across millions of cells. Thus, we still know very little about bacterial cooperation at the biological relevant scale: the individual cell level. Here, I present research using the secretion of public goods in the opportunistic human pathogen Pseudomonas aeruginosa, to tackle this issue. I will explore new dimensions of bacterial cooperation by asking whether bacteria engage in collective-decision making to find optimal group-level solutions; whether bacteria show division of labour to split up work efficiently; and whether bacteria can distinguish between trustworthy and cheating partners. The proposed research will make two significant contributions. First, it will reveal whether bacteria engage in complex forms of cooperation (collective decision-making, division of labour, partner recognition), which have traditionally been associated with higher organisms. Second, it will provide insights into the evolutionary stability of cooperation – key knowledge for designing therapies that interfere with virulence-inducing public goods in infections, and the design of stable public-good based remediation processes.
Max ERC Funding
1 994 981 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BIOCOM
Project Biotic community attributes and ecosystem functioning: implications for predicting and mitigating global change impacts
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD REY JUAN CARLOS
Call Details Starting Grant (StG), LS8, ERC-2009-StG
Summary Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Summary
Increases in nutrient availability and temperature, and changes in precipitation patterns and biodiversity are important components of global environmental change. Thus, it is imperative to understand their impacts on the functioning of natural ecosystems. Substantial research efforts are being currently devoted to predict how biodiversity will respond to global change. However, little is known on the relative importance of biodiversity against other attributes of biotic communities, such as species cover and spatial pattern, as a driver of ecosystem processes. Furthermore, the effects of global change on the relationships between these attributes and ecosystem functioning are virtually unknown. This project aims to evaluate the relationships between community attributes (species richness, composition, evenness, cover, and spatial pattern) and key processes related to ecosystem functioning under different global change scenarios. Its specific objectives are to: i) evaluate the relative importance of community attributes as drivers of ecosystem functioning, ii) assess how multiple global change drivers will affect key ecosystem processes, iii) test whether global change drivers modify observed community attributes-ecosystem functioning relationships, iv) develop models to forecast global change effects on ecosystem functioning, and v) set up protocols for the establishment of mitigation actions based on the results obtained. They will be achieved by integrating experimental and modeling approaches conducted with multiple biotic communities at different spatial scales. Such integrated framework has not been tackled before, and constitutes a ground breaking advance over current research efforts on global change. This proposal will also open the door to new research lines exploring the functional role of community attributes and their importance as modulators of ecosystem responses to global change.
Max ERC Funding
1 463 374 €
Duration
Start date: 2010-01-01, End date: 2015-09-30
Project acronym BIODESERT
Project Biological feedbacks and ecosystem resilience under global change: a new perspective on dryland desertification
Researcher (PI) Fernando Tomás Maestre Gil
Host Institution (HI) UNIVERSIDAD DE ALICANTE
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Summary
Changes in climate and land use (e.g., increased grazing pressure), are two main global change components that also act as major desertification drivers. Understanding how drylands will respond to these drivers is crucial because they occupy 41% of the terrestrial surface and are home to over 38% of the world’s human population. Land degradation already affects ~250 million people in the developing world, which rely upon the provision of many ecosystem processes (multifunctionality). This proposal aims to develop a better understanding of the functioning and resilience of drylands (i.e. their ability to respond to and recover from disturbances) to major desertification drivers. Its objectives are to: 1) test how changes in climate and grazing pressure determine spatiotemporal patterns in multifunctionality in global drylands, 2) assess how biotic attributes (e.g., biodiversity, cover) modulate ecosystem resilience to climate change and grazing pressure at various spatial scales, 3) test and develop early warning indicators of desertification, and 4) forecast the onset of desertification and its ecological consequences under different climate and grazing scenarios. I will use various biotic communities/attributes, ecosystem services and spatial scales (from local to global), and will combine approaches from several disciplines. Such comprehensive and highly integrated research endeavor is novel and constitutes a ground breaking advance over current research efforts on desertification. This project will provide a mechanistic understanding on the processes driving multifunctionality under different global change scenarios, as well as key insights to forecast future scenarios for the provisioning of ecosystem services in drylands, and to test and develop early warning indicators of desertification. This is of major importance to attain global sustainability and key Millennium Development Goals, such as the eradication of poverty.
Max ERC Funding
1 894 450 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym CAMERA
Project Characterizing Adaptation and Migration Events with Modern and Ancient Genomes
Researcher (PI) Anna-Sapfo Malaspinas
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Summary
BACKGROUND Ancient DNA research has recently entered the genomics era. Performing “ancient population genomics” is now technically possible. Utilizing the temporal aspect of this new data, we can address fundamental evolutionary questions such as the amount of selection acting on the genome or the mode and tempo of the colonization of the world. AIMS The overall goal of the proposed research is to (i) generate and analyse data to answer two long standing questions in human evolution: understanding the molecular basis of human adaptation to high altitude and investigating the timing of the Polynesian-South American contact, (ii) develop statistical approaches that combine ancient and modern genetic data to estimate the timing and the intensity of a selective sweep and an admixture event. METHODOLOGY Application: We will collect, date and DNA sequence human remains. Combining the ancient genetic data, 14C dates with existing modern genomic data will allow us to increase the resolution as to the timing of the adaptive and the admixture event, respectively, while generating unique datasets. Theory: We will build on existing methods based on one-locus classical population genetic models to develop tools to analyse whole genome time serial data. RELEVANCE Ecological: The results will address the fundamental question of how much of the human genome is undergoing selection, better characterize one of the textbook examples of adaptation in humans and contribute to our understanding of the peopling of the Americas. Medical: We will gain insights into the fundamental stress physiology experienced at high altitude and therefore into altitude-related illnesses. Methodological: The methods developed in this project will not only benefit the growing field of ancient genomics but also other fields where data is collected in a temporal manner, such as experimental evolution and epidemiology
Max ERC Funding
1 498 478 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym CICHLIDX
Project An integrative approach towards the understanding of an adaptive radiation of East African cichlid fishes
Researcher (PI) Walter Salzburger
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS8, ERC-2013-CoG
Summary "More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Summary
"More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Max ERC Funding
1 999 238 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym COMPCON
Project Competition under (niche) construction
Researcher (PI) Sara NEWBERY RAPOSO DE MAGALHÃES
Host Institution (HI) FCIENCIAS.ID - ASSOCIACAO PARA A INVESTIGACAO E DESENVOLVIMENTO DE CIENCIAS
Call Details Consolidator Grant (CoG), LS8, ERC-2016-COG
Summary Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Summary
Interspecific competition is arguably the best interaction to address how individual trait variation and eco-evolutionary feedbacks shape species distributions and trait evolution, due to its indirect effects via the shared resource. However, a clear understanding of such feedbacks is only possible if each contributing factor can be manipulated independently. With COMPCON, we will address how individual variation, niche width, niche construction and the presence of competitors shape species distributions and trait evolution, using a system amenable to manipulation of all these variables. The system is composed of two spider mite species, Tetranychus urticae and T. ludeni, that up- and down-regulate plant defences (i.e., negative and positive niche construction, respectively). Tomato mutant plants with low defences will be used as an environment in which niche construction is not expressed. Furthermore, tomato plants will be grown under different cadmium concentrations, allowing quantitative variation of available niches. Using isogenic lines, we will measure individual variation in niche width, niche construction and competitive ability. Different combinations of lines will then be used to test key predictions of recent theory on how such variation affects coexistence with competitors. Subsequently, mite populations will evolve in environments with either one or more potential niches, in plants where niche construction is possible or not, and in presence or absence of competitors (coevolving or not). We will test how these selection pressures affect niche width, niche construction and competitive ability, as well as plant damage. Finally, we will re-derive isogenic lines from these treatments, to test how evolution under different scenarios affects individual variation in niche width.
COMPCON will shed new light on the role of competition in shaping eco-evolutionary communities, with bearings on disciplines ranging from macro-ecology to evolutionary genetics
Max ERC Funding
1 999 275 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym DETECT
Project Describing Evolution with Theoretical, Empirical, and Computational Tools
Researcher (PI) Jeffrey Jensen
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary As evolutionary biologists we are of course motivated by the desire to gain further insight in to the evolution of natural populations. The main goals of this proposal are to (i) develop theory and methodology that will enable the identification of adaptively evolving genomic regions using polymorphism data, (ii) develop theory and methodology for the estimation of whole-genome rates of adaptive evolution, and (iii) apply the developed theory in two strategic collaborative applications. Capitalizing on recently available and soon-to-be available whole genome polymorphism data across multiple taxa, these approaches are expected to significantly improve the identification and localization of recent selective events, as well as provide long sought after information regarding the genomic distributions of selective effects. Additionally, through these on-going collaborations with empirical and experimental labs, this methodology will allow for specific hypothesis testing that will further illuminate classical examples of adaptation. Together, this proposal seeks to Describe Evolution with Theoretical, Empirical and Computational Tools (DETECT), seeking to accurately describe the very mode and tempo of Darwinian adaptation.
Summary
As evolutionary biologists we are of course motivated by the desire to gain further insight in to the evolution of natural populations. The main goals of this proposal are to (i) develop theory and methodology that will enable the identification of adaptively evolving genomic regions using polymorphism data, (ii) develop theory and methodology for the estimation of whole-genome rates of adaptive evolution, and (iii) apply the developed theory in two strategic collaborative applications. Capitalizing on recently available and soon-to-be available whole genome polymorphism data across multiple taxa, these approaches are expected to significantly improve the identification and localization of recent selective events, as well as provide long sought after information regarding the genomic distributions of selective effects. Additionally, through these on-going collaborations with empirical and experimental labs, this methodology will allow for specific hypothesis testing that will further illuminate classical examples of adaptation. Together, this proposal seeks to Describe Evolution with Theoretical, Empirical and Computational Tools (DETECT), seeking to accurately describe the very mode and tempo of Darwinian adaptation.
Max ERC Funding
1 071 729 €
Duration
Start date: 2013-01-01, End date: 2017-08-31
Project acronym DROSADAPTATION
Project New approaches to long-standing questions: adaptation in Drosophila
Researcher (PI) Josefa Gonzalez Perez
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Summary
Understanding how organisms adapt to their environments is a long-standing problem in Biology with far-reaching implications: adaptation affects the ability of species to survive in changing environments, host-pathogen interactions, and resistance to pesticides and drugs. Despite recent progress, adaptation is to date a poorly understood process largely due to limitations of current approaches that focus (i) on a priori candidate genes, (ii) on signals of selection at the DNA level without functional validation of the identified candidates, and (iii) on small sets of adaptive mutations that do not represent the variability present in natural populations. As a result, major questions such as what is the relative importance of different types of mutations in adaptation?, and what is the importance of epigenetic changes in adaptive evolution?, remain largely unanswered.
To gain a deep understanding of adaptation, we need to systematically identify adaptive mutations across space and time, pinpoint their molecular mechanisms and discover their fitness effects. To this end, Drosophila melanogaster has proven to be an ideal organism. Besides the battery of genetic tools and resources available, D. melanogaster has recently adapted to live in out of Africa environments. We and others have already shown that transposable elements (TEs) have substantially contributed to the adaptation of D. melanogaster to different environmental challenges. Here, we propose to use state-of-the-art techniques, such as Illumina TruSeq sequencing and CRISPR/Cas9 genome editing, to systematically identify and characterize in detail adaptive TE insertions in D. melanogaster natural populations. Only by moving from gathering anecdotic evidence to applying global approaches, we will be able to start constructing a quantitative and predictive theory of adaptation that will be relevant for other species as well.
Max ERC Funding
2 392 521 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym DrosoSpiro
Project The Drosophila-Spiroplasma interaction as a model to dissect the molecular mechanisms underlying insect endosymbiosis
Researcher (PI) Bruno Lemaitre
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), LS8, ERC-2013-ADG
Summary Virtually every species of insect harbors facultative bacterial endosymbionts that are transmitted from females to their offspring, often in the egg cytoplasm. These symbionts play crucial roles in the biology of their hosts. Many manipulate host reproduction in order to spread within host populations. Others increase the fitness of their hosts under certain conditions. For example, increasing tolerance to heat or protecting their hosts against natural enemies. Over the past decade, our understanding of insect endosymbionts has shifted from seeing them as fascinating oddities to being ubiquitous and central to the biology of their hosts, including many of high economic and medical importance. However, in spite of growing interest in endosymbionts, very little is known about the molecular mechanisms underlying most endosymbiont-insect interactions. For instance, the basis of the main phenotypes caused by endosymbionts, including diverse reproductive manipulations or symbiont-protective immunity, remains largely enigmatic. The goal of the present application is to fill this gap by dissecting the interaction between Drosophila and its native endosymbiont Spiroplasma poulsonii. This project will use a broad range of approaches ranging from molecular genetic to genomics to dissect the molecular mechanisms underlying key features of the symbiosis, including vertical transmission, male killing, regulation of symbiont growth, and symbiont-mediated protection against parasitic wasps. We believe that the fundamental knowledge generated on the Drosophila-Spiroplasma interaction will serve as a paradigm for other endosymbiont-insect interactions that are less amenable to genetic studies.
Summary
Virtually every species of insect harbors facultative bacterial endosymbionts that are transmitted from females to their offspring, often in the egg cytoplasm. These symbionts play crucial roles in the biology of their hosts. Many manipulate host reproduction in order to spread within host populations. Others increase the fitness of their hosts under certain conditions. For example, increasing tolerance to heat or protecting their hosts against natural enemies. Over the past decade, our understanding of insect endosymbionts has shifted from seeing them as fascinating oddities to being ubiquitous and central to the biology of their hosts, including many of high economic and medical importance. However, in spite of growing interest in endosymbionts, very little is known about the molecular mechanisms underlying most endosymbiont-insect interactions. For instance, the basis of the main phenotypes caused by endosymbionts, including diverse reproductive manipulations or symbiont-protective immunity, remains largely enigmatic. The goal of the present application is to fill this gap by dissecting the interaction between Drosophila and its native endosymbiont Spiroplasma poulsonii. This project will use a broad range of approaches ranging from molecular genetic to genomics to dissect the molecular mechanisms underlying key features of the symbiosis, including vertical transmission, male killing, regulation of symbiont growth, and symbiont-mediated protection against parasitic wasps. We believe that the fundamental knowledge generated on the Drosophila-Spiroplasma interaction will serve as a paradigm for other endosymbiont-insect interactions that are less amenable to genetic studies.
Max ERC Funding
1 963 926 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ECOADAPT
Project Microbial adaptation within ecosystems
Researcher (PI) Isabel Antunes Mendes Gordo
Host Institution (HI) FUNDACAO CALOUSTE GULBENKIAN
Call Details Starting Grant (StG), LS8, ERC-2010-StG_20091118
Summary All natural populations are constantly subject to new mutations, and frequently face new environments, to which they adapt. Knowledge of the genetics of adaptation should provide the centerpiece of a unified theory of evolution. Despite its extreme importance, the process of adaptation is far from being understood. How does the shape of distribution of fitness effects of mutations depend on the environment? What is the importance of epistasis in adaptive evolution? are still open questions. While empirical observations on advantageous mutations are extremely difficult, recent technical advances allow us to start tackling these questions with an unprecedented accuracy. Here we will combine different methods in a novel powerful marker system to track adaptive mutations as they become incorporated into bacterial populations adapting to different environments and as they fix. Interestingly theory suggest that some generalities may underlie the process of adaptation and that ecology may be important in the dynamics and statistical laws of adaptation. Experimental evolution with bacteria presents us with the opportunity to directly measure key parameters and to test theoretical predictions about the genetic basis of adaptive evolution in increasingly complex ecosystems. As Dobzansky pointed out The greater the diversity of inhabitants in a territory, the more adaptive opportunities exist in it. The main goal of this research project is to measure rates and effects of adaptive mutations, as well as patterns of epistasis amongst beneficial mutations in environments with different strengths of abiotic versus biotic interactions.
Summary
All natural populations are constantly subject to new mutations, and frequently face new environments, to which they adapt. Knowledge of the genetics of adaptation should provide the centerpiece of a unified theory of evolution. Despite its extreme importance, the process of adaptation is far from being understood. How does the shape of distribution of fitness effects of mutations depend on the environment? What is the importance of epistasis in adaptive evolution? are still open questions. While empirical observations on advantageous mutations are extremely difficult, recent technical advances allow us to start tackling these questions with an unprecedented accuracy. Here we will combine different methods in a novel powerful marker system to track adaptive mutations as they become incorporated into bacterial populations adapting to different environments and as they fix. Interestingly theory suggest that some generalities may underlie the process of adaptation and that ecology may be important in the dynamics and statistical laws of adaptation. Experimental evolution with bacteria presents us with the opportunity to directly measure key parameters and to test theoretical predictions about the genetic basis of adaptive evolution in increasingly complex ecosystems. As Dobzansky pointed out The greater the diversity of inhabitants in a territory, the more adaptive opportunities exist in it. The main goal of this research project is to measure rates and effects of adaptive mutations, as well as patterns of epistasis amongst beneficial mutations in environments with different strengths of abiotic versus biotic interactions.
Max ERC Funding
1 167 600 €
Duration
Start date: 2010-12-01, End date: 2015-11-30