Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 2G-CSAFE
Project Combustion of Sustainable Alternative Fuels for Engines used in aeronautics and automotives
Researcher (PI) Philippe Dagaut
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE8, ERC-2011-ADG_20110209
Summary This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Summary
This project aims at promoting sustainable combustion technologies for transport via validation of advanced combustion kinetic models obtained using sophisticated new laboratory experiments, engines, and theoretical computations, breaking through the current frontier of knowledge. It will focus on the unexplored kinetics of ignition and combustion of 2nd generation (2G) biofuels and blends with conventional fuels, which should provide energy safety and sustainability to Europe. The motivation is that no accurate kinetic models are available for the ignition, oxidation and combustion of 2G-biofuels, and improved ignition control is needed for new compression ignition engines. Crucial information is missing: data from well characterised experiments on combustion-generated pollutants and data on key-intermediates for fuels ignition in new engines.
To provide that knowledge new well-instrumented complementary experiments and kinetic modelling will be used. Measurements of key-intermediates, stables species, and pollutants will be performed. New ignition control strategies will be designed, opening new technological horizons. Kinetic modelling will be used for rationalising the results. Due to the complexity of 2G-biofuels and their unusual composition, innovative surrogates will be designed. Kinetic models for surrogate fuels will be generalised for extension to other compounds. The experimental results, together with ab-initio and detailed modelling, will serve to characterise the kinetics of ignition, combustion, and pollutants formation of fuels including 2G biofuels, and provide relevant data and models.
This research is risky because this is (i) the 1st effort to measure radicals by reactor/CRDS coupling, (ii) the 1st effort to use a μ-channel reactor to build ignition databases for conventional and bio-fuels, (iii) the 1st effort to design and use controlled generation and injection of reactive species to control ignition/combustion in compression ignition engines
Max ERC Funding
2 498 450 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D-CAP
Project 3D micro-supercapacitors for embedded electronics
Researcher (PI) David Sarinn PECH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Summary
The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Max ERC Funding
1 673 438 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 3D-FABRIC
Project 3D Flow Analysis in Bijels Reconfigured for Interfacial Catalysis
Researcher (PI) Martin F. HAASE
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Summary
The objective of this proposal is to determine the unknown criteria for convective cross-flow in bicontinuous interfacially jammed emulsion gels (bijels). Based on this, we will answer the question: Can continuously operated interfacial catalysis be realized in bijel cross-flow reactors? Demonstrating this potential will introduce a broadly applicable chemical technology, replacing wasteful chemical processes that require organic solvents. We will achieve our objective in three steps:
(a) Control over bijel structure and properties. Bijels will be formed with a selection of functional inorganic colloidal particles. Nanoparticle surface modifications will be developed and extensively characterized. General principles for the parameters determining bijel structures and properties will be established based on confocal and electron microscopy characterization. These principles will enable unprecedented control over bijel formation and will allow for designing desired properties.
(b) Convective flow in bijels. The mechanical strength of bijels will be tailored and measured. With mechanically robust bijels, the influence of size and organization of oil/water channels on convective mass transfer in bijels will be investigated. To this end, a bijel mass transfer apparatus fabricated by 3d-printing of bijel fibers and soft photolithography will be introduced. In conjunction with the following objective, the analysis of convective flows in bijels will facilitate a thorough description of their structure/function relationships.
(c) Biphasic chemical reactions in STrIPS bijel cross-flow reactors. First, continuous extraction in bijels will be realized. Next, conditions to carry out continuously-operated, phase transfer catalysis of well-known model reactions in bijels will be determined. Both processes will be characterized in-situ and in 3-dimensions by confocal microscopy of fluorescent phase transfer reactions in transparent bijels.
Max ERC Funding
1 905 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym 3D-FM
Project Taking Force Microscopy into the Third Dimension
Researcher (PI) Tjerk Hendrik Oosterkamp
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Summary
I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Max ERC Funding
1 794 960 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym 3D-nanoMorph
Project Label-free 3D morphological nanoscopy for studying sub-cellular dynamics in live cancer cells with high spatio-temporal resolution
Researcher (PI) Krishna AGARWAL
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Summary
Label-free optical nanoscopy, free from photobleaching and photochemical toxicity of fluorescence labels and yielding 3D morphological resolution of <50 nm, is the future of live cell imaging. 3D-nanoMorph breaks the diffraction barrier and shifts the paradigm in label-free nanoscopy, providing isotropic 3D resolution of <50 nm. To achieve this, 3D-nanoMorph performs non-linear inverse scattering for the first time in nanoscopy and decodes scattering between sub-cellular structures (organelles).
3D-nanoMorph innovatively devises complementary roles of light measurement system and computational nanoscopy algorithm. A novel illumination system and a novel light collection system together enable measurement of only the most relevant intensity component and create a fresh perspective about label-free measurements. A new computational nanoscopy approach employs non-linear inverse scattering. Harnessing non-linear inverse scattering for resolution enhancement in nanoscopy opens new possibilities in label-free 3D nanoscopy.
I will apply 3D-nanoMorph to study organelle degradation (autophagy) in live cancer cells over extended duration with high spatial and temporal resolution, presently limited by the lack of high-resolution label-free 3D morphological nanoscopy. Successful 3D mapping of nanoscale biological process of autophagy will open new avenues for cancer treatment and showcase 3D-nanoMorph for wider applications.
My cross-disciplinary expertise of 14 years spanning inverse problems, electromagnetism, optical microscopy, integrated optics and live cell nanoscopy paves path for successful implementation of 3D-nanoMorph.
Max ERC Funding
1 499 999 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym 3MC
Project 3D Model Catalysts to explore new routes to sustainable fuels
Researcher (PI) Petra Elisabeth De jongh
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Summary
Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Max ERC Funding
1 999 625 €
Duration
Start date: 2015-09-01, End date: 2020-08-31