Project acronym CartiLube
Project Lubricating Cartilage: exploring the relation between lubrication and gene-regulation to alleviate osteoarthritis
Researcher (PI) Jacob KLEIN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Summary
Can we exploit insights from the remarkably lubricated surfaces of articular cartilage, to create lubricants that may alleviate osteoarthritis (OA), the most widespread joint disease, affecting millions? These, succinctly, are the challenges of the present proposal. They are driven by our recent finding that lubrication of destabilised joints leads to changes in gene-regulation of the cartilage-embedded chondrocytes to protect against development of the disease. OA alleviation is known to arise through orthopedically suppressing shear-stresses on the cartilage, and a central premise of this project is that, by reducing friction at the articulating cartilage through suitable lubrication, we may achieve the same beneficial effect on the disease. The objectives of this project are to better understand the origins of cartilage boundary lubrication through examination of friction-reduction by its main molecular components, and exploit that understanding to create lubricants that, on intra-articular injection, will lubricate cartilage sufficiently well to achieve alleviation of OA via gene regulation. The project will examine, via both nanotribometric and macroscopic measurements, how the main molecular species implicated in cartilage lubrication, lipids, hyaluronan and lubricin, and their combinations, act together to form optimally lubricating boundary layers on model surfaces as well as on excised cartilage. Based on this, we shall develop suitable materials to lubricate cartilage in joints, using mouse models. Lubricants will further be optimized with respect to their retention in the joint and cartilage targeting, both in model studies and in vivo. The effect of the lubricants in regulating gene expression, in reducing pain and cartilage degradation, and in promoting stem-cell adhesion to the cartilage will be studied in a mouse model in which OA has been induced. Our results will have implications for treatment of a common, debilitating disease.
Max ERC Funding
2 499 944 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CLUNATRA
Project Discovering new Catalysts in the Cluster-Nanoparticle Transition Regime
Researcher (PI) Ib CHORKENDORFF
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary The purpose of this proposal is to establish new fundamental insight of the reactivity and thereby the catalytic activity of oxides, nitrides, phosphides and sulfides (O-, N-, P-, S- ides) in the Cluster-Nanoparticle transition regime. We will use this insight to develop new catalysts through an interactive loop involving DFT simulations, synthesis, characterization and activity testing. The overarching objective is to make new catalysts that are efficient for production of solar fuels and chemicals to facilitate the implementation of sustainable energy, e.g. electrochemical hydrogen production and reduction of CO2 and N2 through both electrochemical and thermally activated processes.
Recent research has identified why there is a lack of significant progress in developing new more active catalysts. Chemical scaling-relations exist among the intermediates, making it difficult to find a reaction pathway, which provides a flat potential energy landscape - a necessity for making the reaction proceed without large losses. My hypothesis is that going away from the conventional size regime, > 2 nm, one may break such chemical scaling-relations. Non-scalable behavior means that adding an atom results in a completely different reactivity. This drastic change could be even further enhanced if the added atom is a different element than the recipient particle, providing new freedom to control the reaction pathway. The methodology will be based on setting up a specifically optimized instrument for synthesizing such mass-selected clusters/nanoparticles. Thus far, researchers have barely explored this size regime. Only a limited amount of studies has been devoted to inorganic entities of oxides and sulfides; nitrides and phosphides are completely unexplored. We will employ atomic level simulations, synthesis, characterization, and subsequently test for specific reactions. This interdisciplinary loop will result in new breakthroughs in the area of catalyst material discovery.
Summary
The purpose of this proposal is to establish new fundamental insight of the reactivity and thereby the catalytic activity of oxides, nitrides, phosphides and sulfides (O-, N-, P-, S- ides) in the Cluster-Nanoparticle transition regime. We will use this insight to develop new catalysts through an interactive loop involving DFT simulations, synthesis, characterization and activity testing. The overarching objective is to make new catalysts that are efficient for production of solar fuels and chemicals to facilitate the implementation of sustainable energy, e.g. electrochemical hydrogen production and reduction of CO2 and N2 through both electrochemical and thermally activated processes.
Recent research has identified why there is a lack of significant progress in developing new more active catalysts. Chemical scaling-relations exist among the intermediates, making it difficult to find a reaction pathway, which provides a flat potential energy landscape - a necessity for making the reaction proceed without large losses. My hypothesis is that going away from the conventional size regime, > 2 nm, one may break such chemical scaling-relations. Non-scalable behavior means that adding an atom results in a completely different reactivity. This drastic change could be even further enhanced if the added atom is a different element than the recipient particle, providing new freedom to control the reaction pathway. The methodology will be based on setting up a specifically optimized instrument for synthesizing such mass-selected clusters/nanoparticles. Thus far, researchers have barely explored this size regime. Only a limited amount of studies has been devoted to inorganic entities of oxides and sulfides; nitrides and phosphides are completely unexplored. We will employ atomic level simulations, synthesis, characterization, and subsequently test for specific reactions. This interdisciplinary loop will result in new breakthroughs in the area of catalyst material discovery.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym CoupledNC
Project Coupled Nanocrystal Molecules: Quantum coupling effects via chemical coupling of colloidal nanocrystals
Researcher (PI) Uri BANIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Summary
Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules and materials. Herein I introduce nanocrystal chemistry: the use of semiconductor nanocrystals (NCs) as artificial atoms to form NC molecules that are chemically, structurally and physically coupled. The unique emergent quantum mechanical consequences of the NCs coupling will be studied and tailored to yield a chemical-quantum palette: coherent coupling of NC exciton states; dual color single photon emitters functional also as photo-switchable chromophores in super-resolution fluorescence microscopy; electrically switchable single NC photon emitters for utilization as taggants for neuronal activity and as chromophores in displays; new NC structures for lasing; and coupled quasi-1D NC chains manifesting mini-band formation, and tailored for a quantum-cascade effect for IR photon emission. A novel methodology of controlled oriented attachment of NC building blocks (in particular of core/shell NCs) will be presented to realize the coupled NCs molecules. For this a new type of Janus NC building block will be developed, and used as an element in a Lego-type construction of double quantum dots (dimers), heterodimers coupling two different types of NCs, and more complex NC coupled quantum structures. To realize this NC chemistry approach, surface control is essential, which will be achieved via investigation of the chemical and dynamical properties of the NCs surface ligands layer. As outcome I can expect to decipher NCs surface chemistry and dynamics, including its size dependence, and to introduce Janus NCs with chemically distinct and selectively modified surface faces. From this I will develop a new step-wise approach for synthesis of coupled NCs molecules and reveal the consequences of quantum coupling in them. This will inspire theoretical and further experimental work and will set the stage for the development of the diverse potential applications of coupled NC molecules.
Max ERC Funding
2 499 750 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym LIGHT
Project advanced Light mIcroscopy for Green cHemisTry
Researcher (PI) Maarten Blanka Jozef Roeffaers
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "Optimization of catalytic materials and hence of chemical processes heavily relies on gaining detailed insight into the complex dynamics underlying the outcome of a catalytic process and using this information in the rational design of improved catalysts. So far, spectroscopic approaches have already contributed importantly; however a strong need for new and improved in situ spectroscopic methods with micro- and nanometer resolution still remains. This project aims to develop advanced light microscopy tools that will significantly contribute to this goal."
Summary
"Optimization of catalytic materials and hence of chemical processes heavily relies on gaining detailed insight into the complex dynamics underlying the outcome of a catalytic process and using this information in the rational design of improved catalysts. So far, spectroscopic approaches have already contributed importantly; however a strong need for new and improved in situ spectroscopic methods with micro- and nanometer resolution still remains. This project aims to develop advanced light microscopy tools that will significantly contribute to this goal."
Max ERC Funding
1 999 485 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym MAGNETIC BEAMS
Project Magnetically manipulated molecular beams; a novel ultra-sensitive approach for studying the structure and dynamics of water surfaces
Researcher (PI) Gil Alexandrowicz
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary This proposal is aimed at developing and applying novel ultra-sensitive methods for studying the structure and dynamics of surfaces on an atomic scale, focusing on water surfaces in particular.
The proposal consists of two main instrument development projects which are based on magnetic manipulation of molecular beams: (1) Developing a ground-breaking apparatus which uses a pre-polarized H2O molecular beam in order to perform NMR measurements on dilute surface science systems, measurements which were impossible using conventional NMR approaches. (2) Developing a unique second-generation helium spin echo spectrometer which is sensitive to motion on an unprecedentedly wide time scale range. This instrument will be capable of measuring atomic scale surface dynamics of systems which were previously beyond the realm of experimentalists.
Both of these novel instruments will be primarily used to study the atomic scale structure and dynamics of water surfaces. Studying these systems is particularly challenging due to the delicate and complex nature of the surface, nevertheless, there is an extensive interest in studying water surfaces due to the key role they play in a wide range of research fields and applications. Examples include atmospheric chemistry, where ozone depleting reactions are catalyzed on ice surfaces, Material sciences and nano-technology, where the interaction and reactivity of a surface with water can determine the performance of novel miniature devices and even astrophysics where star birth reactions take place on ice surfaces. We intend to exploit the new contrast mechanisms and the unique time scales made available by the novel instruments we will develop, in order to obtain new experimental insights into this exciting research field.
Summary
This proposal is aimed at developing and applying novel ultra-sensitive methods for studying the structure and dynamics of surfaces on an atomic scale, focusing on water surfaces in particular.
The proposal consists of two main instrument development projects which are based on magnetic manipulation of molecular beams: (1) Developing a ground-breaking apparatus which uses a pre-polarized H2O molecular beam in order to perform NMR measurements on dilute surface science systems, measurements which were impossible using conventional NMR approaches. (2) Developing a unique second-generation helium spin echo spectrometer which is sensitive to motion on an unprecedentedly wide time scale range. This instrument will be capable of measuring atomic scale surface dynamics of systems which were previously beyond the realm of experimentalists.
Both of these novel instruments will be primarily used to study the atomic scale structure and dynamics of water surfaces. Studying these systems is particularly challenging due to the delicate and complex nature of the surface, nevertheless, there is an extensive interest in studying water surfaces due to the key role they play in a wide range of research fields and applications. Examples include atmospheric chemistry, where ozone depleting reactions are catalyzed on ice surfaces, Material sciences and nano-technology, where the interaction and reactivity of a surface with water can determine the performance of novel miniature devices and even astrophysics where star birth reactions take place on ice surfaces. We intend to exploit the new contrast mechanisms and the unique time scales made available by the novel instruments we will develop, in order to obtain new experimental insights into this exciting research field.
Max ERC Funding
1 850 000 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym NanoCellActivity
Project Nanoscale live-cell activity sensing using smart probes and imaging
Researcher (PI) Peter Robert L. DEDECKER
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Fluorescence microscopy is the tool of choice for live-cell imaging. Its usefulness has been further enhanced by the availability of genetically-encoded biosensors, which enable the visualisation of when and where a certain activity arises. In addition, the development of diffraction-unlimited imaging has dramatically improved the spatial resolution of fluorescence imaging. However, these techniques have had difficulty working with biosensors, largely limiting the information to the spatial location of the labels.
This project seeks to develop diffraction-unlimited imaging of biosensors, creating activity maps with a diffraction-unlimited spatial resolution in living systems. I propose to meet this challenge using a two-pronged approach, focusing both on the development of labels and sensors as well as new imaging tools and strategies. Based on existing scaffolds, we will develop sensors that display strong photochromism, providing reversible fluorescence dynamics intrinsically suited to superresolution imaging. In tandem, we will develop imaging strategies that focus on robustness and work well in living systems, in exchange for a spatial resolution of a 50 to 70 nm and a temporal resolution of a few seconds or less.
We will use these developments in the study of the nanoscale spatiotemporal regulation of G-protein-coupled receptor (GCPR) signalling in living systems. By extending sub-diffraction imaging to the molecular environment, this project will contribute new insights into long-standing research questions that directly involve the health and well-being of all of us, while also enabling exciting prospects for further research.
Summary
Fluorescence microscopy is the tool of choice for live-cell imaging. Its usefulness has been further enhanced by the availability of genetically-encoded biosensors, which enable the visualisation of when and where a certain activity arises. In addition, the development of diffraction-unlimited imaging has dramatically improved the spatial resolution of fluorescence imaging. However, these techniques have had difficulty working with biosensors, largely limiting the information to the spatial location of the labels.
This project seeks to develop diffraction-unlimited imaging of biosensors, creating activity maps with a diffraction-unlimited spatial resolution in living systems. I propose to meet this challenge using a two-pronged approach, focusing both on the development of labels and sensors as well as new imaging tools and strategies. Based on existing scaffolds, we will develop sensors that display strong photochromism, providing reversible fluorescence dynamics intrinsically suited to superresolution imaging. In tandem, we will develop imaging strategies that focus on robustness and work well in living systems, in exchange for a spatial resolution of a 50 to 70 nm and a temporal resolution of a few seconds or less.
We will use these developments in the study of the nanoscale spatiotemporal regulation of G-protein-coupled receptor (GCPR) signalling in living systems. By extending sub-diffraction imaging to the molecular environment, this project will contribute new insights into long-standing research questions that directly involve the health and well-being of all of us, while also enabling exciting prospects for further research.
Max ERC Funding
1 368 250 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym SMALLOSTERY
Project Single-molecule spectroscopy of coordinated motions in allosteric proteins
Researcher (PI) Gilad HARAN
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE4, ERC-2016-ADG
Summary Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Summary
Critical for the function of many proteins, allosteric communication involves transmission of the effect of binding at one site of a protein to another through conformational changes. Yet the structural and dynamic basis for allostery remains poorly understood. In particular, there is no method to follow coordinated large-scale motions of domains and subunits in proteins as they occur. Since the subunits of allosteric proteins often contain multiple domains, any such method entails probing the dynamics along several intra-protein distances simultaneously.
This proposal aims at ameliorating this deficiency by creating the experimental framework for exploring time-dependent coordination of allosteric transitions of multiple units within proteins. Our methodology will rely on single-molecule FRET spectroscopy with multiple labels on the same protein and advanced analysis. We will explore fundamental issues in protein dynamics: relative motions of domains within subunits, propagation of conformational change between subunits, and synchronization of these motions by effector molecules.
To investigate these issues, we have carefully selected three model systems, each representing an important scenario of allosteric regulation. While the homo-oligomeric protein-folder GroEL conserves symmetry in a concerted transition between major structural states, the symmetry of the homo-oligomeric disaggregating machine ClpB is broken via a sequential transition. Symmetry is attained only after binding to DNA and ligands in the third system, the family of RXR heterodimers.
This exciting project will provide the very first catalogue of coordinated and time-ordered motions within and between subunits of allosteric proteins and the first measurement of the time scale of the conformational spread through a large protein. It will enhance dramatically our understanding of how allostery contributes to protein function, influencing future efforts to design drugs for allosteric proteins.
Max ERC Funding
2 484 722 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym TORMCJ
Project Thermal, optical and redox processes in molecular conduction junctions
Researcher (PI) Abraham Nitzan
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Advanced Grant (AdG), PE4, ERC-2008-AdG
Summary Much of the current intense study of molecular conduction junctions is motivated by their possible technological applications, however this research focuses on fundamental questions associated with the properties and operation of such systems. Junctions based on redox molecules often show non-linear conduction behavior as function of imposed bias. Optical interactions in molecular junctions pertain to junction characterization and control. Issues of heating and thermal stability require a proper definition of thermal states (effective temperature) and the understanding of heat production and thermal conduction in non-equilibrium junctions. This proposal focuses on theoretical problems pertaining to these phenomena with the following goals: (a) Develop theoretical methodologies for treating non-equilibrium molecular systems under the combined driving of electrical bias, thermal gradients and optical fields; (b) provide theoretical tools needed for the understanding and interpretation of new and ongoing experimental efforts involving thermal, optical and redox (charging) phenomena in molecular junctions, and (c) use the acquired insight to suggest new methods for characterization, functionality, control and stability of molecular junctions.
Summary
Much of the current intense study of molecular conduction junctions is motivated by their possible technological applications, however this research focuses on fundamental questions associated with the properties and operation of such systems. Junctions based on redox molecules often show non-linear conduction behavior as function of imposed bias. Optical interactions in molecular junctions pertain to junction characterization and control. Issues of heating and thermal stability require a proper definition of thermal states (effective temperature) and the understanding of heat production and thermal conduction in non-equilibrium junctions. This proposal focuses on theoretical problems pertaining to these phenomena with the following goals: (a) Develop theoretical methodologies for treating non-equilibrium molecular systems under the combined driving of electrical bias, thermal gradients and optical fields; (b) provide theoretical tools needed for the understanding and interpretation of new and ongoing experimental efforts involving thermal, optical and redox (charging) phenomena in molecular junctions, and (c) use the acquired insight to suggest new methods for characterization, functionality, control and stability of molecular junctions.
Max ERC Funding
842 420 €
Duration
Start date: 2008-12-01, End date: 2014-05-31
Project acronym ULTRAFASTEUVPROBE
Project Ultrafast EUV probe for Molecular Reaction Dynamics
Researcher (PI) Daniel Strasser
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "This research is aimed at developing and validating a novel approach for time resolved imaging of structural dynamics, using single photon Coulomb explosion imaging (CEI) with ultrafast extreme UV (EUV) pulses to probe laser initiated ultrafast structural rearrangement and fragmentation dynamics. The emerging field of ultrafast EUV pulses attracts increasing amount of scientific attention, predominantly concentrated on understanding aspects of the generation process, as well as on measuring record breaking attosecond pulses at increasingly high photon energies and photon flux. I propose to direct the unique properties of ultrafast EUV pulses towards time resolved studies of molecular reaction dynamics that are inaccessible with conventional ultrafast laser systems. Time resolved single photon CEI will make possible the visualization of complex dynamics in polyatomic systems; specifically, how laser driven electronic excitation couples into nuclear motion in a wide range of molecular systems. In contrast to earlier attempts, in which CEI was driven with intense near-IR pulses that can alter the observed dynamics, the proposed single photon CEI will remove the masking intense field effects and provide a simple and general probe. A comprehensive experimental effort is proposed - to conduct a direct comparison of intense field CEI to the proposed single EUV photon approach. Successful implementation of this research will endow us with a new way to visualize and understand the underlying quantum mechanisms involved in chemical reactions. With this new technology I hope to be able to provide unique insight into molecular fragmentation and rearrangement dynamics during chemical reactions and to resolve long standing basic scientific questions, such as the concerted or sequential nature of double proton transfer in DNA base-pair models. Finally, the ""table top"" techniques developed in my lab will mature and become applicable to the emerging ultrafast EUV user facilities."
Summary
"This research is aimed at developing and validating a novel approach for time resolved imaging of structural dynamics, using single photon Coulomb explosion imaging (CEI) with ultrafast extreme UV (EUV) pulses to probe laser initiated ultrafast structural rearrangement and fragmentation dynamics. The emerging field of ultrafast EUV pulses attracts increasing amount of scientific attention, predominantly concentrated on understanding aspects of the generation process, as well as on measuring record breaking attosecond pulses at increasingly high photon energies and photon flux. I propose to direct the unique properties of ultrafast EUV pulses towards time resolved studies of molecular reaction dynamics that are inaccessible with conventional ultrafast laser systems. Time resolved single photon CEI will make possible the visualization of complex dynamics in polyatomic systems; specifically, how laser driven electronic excitation couples into nuclear motion in a wide range of molecular systems. In contrast to earlier attempts, in which CEI was driven with intense near-IR pulses that can alter the observed dynamics, the proposed single photon CEI will remove the masking intense field effects and provide a simple and general probe. A comprehensive experimental effort is proposed - to conduct a direct comparison of intense field CEI to the proposed single EUV photon approach. Successful implementation of this research will endow us with a new way to visualize and understand the underlying quantum mechanisms involved in chemical reactions. With this new technology I hope to be able to provide unique insight into molecular fragmentation and rearrangement dynamics during chemical reactions and to resolve long standing basic scientific questions, such as the concerted or sequential nature of double proton transfer in DNA base-pair models. Finally, the ""table top"" techniques developed in my lab will mature and become applicable to the emerging ultrafast EUV user facilities."
Max ERC Funding
1 499 000 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym VIN
Project Video-rate Scanning Probe Microscopy Imaging of Nanostructures on Surfaces
Researcher (PI) Flemming Besenbacher
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), PE4, ERC-2008-AdG
Summary The goal of this ERC proposal VIN is to develop the next generation of scanning probe microscopes (SPMs) The microscopes will set new standards in the field through their ability to acquire images at video-rate frequency, while retaining high (atomic) resolution capability. This new instrumental platform will be implemented both under ultra-high vacuum conditions, in a high-pressure gas cell, and under liquid-phase conditions. It will be utilized to create and explore novel research avenues for the study of physical, chemical, and biological surface processes at the single-atom/molecule level with the highest possible spatial and temporal resolution. In particular I will study dynamic phenomena in surface nanostructures, focusing on three mutually synergetic and interdisciplinary priority areas: i) Catalytic reactivity of nanostructures, ii) Self-organisation of organic molecules at surfaces, iii) Biomolecular structures, processes and interactions under physiological conditions. The adsorption, diffusion and interaction of molecules are the basic steps involved in reactions at surfaces. All of them are dynamic processes, where high temporal resolution can provide new groundbreaking insight into e.g. the mechanisms underlying catalysis. Video-rate SPMs will also facilitate investigations of the kinetic aspects of molecular self- organisation at surfaces such as diffusion, intra-molecular conformational dynamics, nucleation and growth of structures. The effort will build upon the world-leading expertise in design, construction and use of SPMs in my research group at the Interdisciplinary Nanoscience Center (iNANO) and the Department of Physics and Astronomy, University of Aarhus, Denmark. To achieve the ambitious research goals, I will bring together an interdisciplinary team of highly talented younger scientists.
Summary
The goal of this ERC proposal VIN is to develop the next generation of scanning probe microscopes (SPMs) The microscopes will set new standards in the field through their ability to acquire images at video-rate frequency, while retaining high (atomic) resolution capability. This new instrumental platform will be implemented both under ultra-high vacuum conditions, in a high-pressure gas cell, and under liquid-phase conditions. It will be utilized to create and explore novel research avenues for the study of physical, chemical, and biological surface processes at the single-atom/molecule level with the highest possible spatial and temporal resolution. In particular I will study dynamic phenomena in surface nanostructures, focusing on three mutually synergetic and interdisciplinary priority areas: i) Catalytic reactivity of nanostructures, ii) Self-organisation of organic molecules at surfaces, iii) Biomolecular structures, processes and interactions under physiological conditions. The adsorption, diffusion and interaction of molecules are the basic steps involved in reactions at surfaces. All of them are dynamic processes, where high temporal resolution can provide new groundbreaking insight into e.g. the mechanisms underlying catalysis. Video-rate SPMs will also facilitate investigations of the kinetic aspects of molecular self- organisation at surfaces such as diffusion, intra-molecular conformational dynamics, nucleation and growth of structures. The effort will build upon the world-leading expertise in design, construction and use of SPMs in my research group at the Interdisciplinary Nanoscience Center (iNANO) and the Department of Physics and Astronomy, University of Aarhus, Denmark. To achieve the ambitious research goals, I will bring together an interdisciplinary team of highly talented younger scientists.
Max ERC Funding
1 324 983 €
Duration
Start date: 2008-12-01, End date: 2013-11-30