Project acronym ARIPHYHIMO
Project Arithmetic and physics of Higgs moduli spaces
Researcher (PI) Tamas Hausel
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE1, ERC-2012-ADG_20120216
Summary The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Summary
The proposal studies problems concerning the geometry and topology of moduli spaces of Higgs bundles on a Riemann surface motivated by parallel considerations in number theory and mathematical physics. In this way the proposal bridges various duality theories in string theory with the Langlands program in number theory.
The heart of the proposal is a circle of precise conjectures relating to the topology of the moduli space of Higgs bundles. The formulation and motivations of the conjectures make direct contact with the Langlands program in number theory, various duality conjectures in string theory, algebraic combinatorics, knot theory and low dimensional topology and representation theory of quivers, finite groups and algebras of Lie type and Cherednik algebras.
Max ERC Funding
1 304 945 €
Duration
Start date: 2013-04-01, End date: 2018-08-31
Project acronym CHROMPHYS
Project Physics of the Solar Chromosphere
Researcher (PI) Mats Per-Olof Carlsson
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE9, ERC-2011-ADG_20110209
Summary CHROMPHYS aims at a breakthrough in our understanding of the solar chromosphere by combining the development of sophisticated radiation-magnetohydrodynamic simulations with observations from the upcoming NASA SMEX mission Interface Region Imaging Spectrograph (IRIS).
The enigmatic chromosphere is the transition between the solar surface and the eruptive outer solar atmosphere. The chromosphere harbours and constrains the mass and energy loading processes that define the heating of the corona, the acceleration and the composition of the solar wind, and the energetics and triggering of solar outbursts (filament eruptions, flares, coronal mass ejections) that govern near-Earth space weather and affect mankind's technological environment.
CHROMPHYS targets the following fundamental physics questions about the chromospheric role in the mass and energy loading of the corona:
- Which types of non-thermal energy dominate in the chromosphere and beyond?
- How does the chromosphere regulate mass and energy supply to the corona and the solar wind?
- How do magnetic flux and matter rise through the chromosphere?
- How does the chromosphere affect the free magnetic energy loading that leads to solar eruptions?
CHROMPHYS proposes to answer these by producing a new, physics based vista of the chromosphere through a three-fold effort:
- develop the techniques of high-resolution numerical MHD physics to the level needed to realistically predict and analyse small-scale chromospheric structure and dynamics,
- optimise and calibrate diverse observational diagnostics by synthesizing these in detail from the simulations, and
- obtain and analyse data from IRIS using these diagnostics complemented by data from other space missions and the best solar telescopes on the ground.
Summary
CHROMPHYS aims at a breakthrough in our understanding of the solar chromosphere by combining the development of sophisticated radiation-magnetohydrodynamic simulations with observations from the upcoming NASA SMEX mission Interface Region Imaging Spectrograph (IRIS).
The enigmatic chromosphere is the transition between the solar surface and the eruptive outer solar atmosphere. The chromosphere harbours and constrains the mass and energy loading processes that define the heating of the corona, the acceleration and the composition of the solar wind, and the energetics and triggering of solar outbursts (filament eruptions, flares, coronal mass ejections) that govern near-Earth space weather and affect mankind's technological environment.
CHROMPHYS targets the following fundamental physics questions about the chromospheric role in the mass and energy loading of the corona:
- Which types of non-thermal energy dominate in the chromosphere and beyond?
- How does the chromosphere regulate mass and energy supply to the corona and the solar wind?
- How do magnetic flux and matter rise through the chromosphere?
- How does the chromosphere affect the free magnetic energy loading that leads to solar eruptions?
CHROMPHYS proposes to answer these by producing a new, physics based vista of the chromosphere through a three-fold effort:
- develop the techniques of high-resolution numerical MHD physics to the level needed to realistically predict and analyse small-scale chromospheric structure and dynamics,
- optimise and calibrate diverse observational diagnostics by synthesizing these in detail from the simulations, and
- obtain and analyse data from IRIS using these diagnostics complemented by data from other space missions and the best solar telescopes on the ground.
Max ERC Funding
2 487 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CRYTERION
Project Cryogenic Traps for Entanglement Research with Ions
Researcher (PI) Rainer Blatt
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary Quantum computers offer a fundamentally new way of information processing. Within the scope of this proposal, quantum information processing with an ion trap quantum computer will be investigated. With the new combination of cryogenic technology and ion traps for quantum computing we intend to build a quantum information processor with strings of up to 50 ions and with two-dimensional ion arrays for an investigation of deterministic many-particle entanglement. The cryogenic traps will be applied for quantum simulations, for fundamental investigations concerning large-scale entanglement and for precision measurements enhanced by quantum metrology techniques employing entangled particles.
Summary
Quantum computers offer a fundamentally new way of information processing. Within the scope of this proposal, quantum information processing with an ion trap quantum computer will be investigated. With the new combination of cryogenic technology and ion traps for quantum computing we intend to build a quantum information processor with strings of up to 50 ions and with two-dimensional ion arrays for an investigation of deterministic many-particle entanglement. The cryogenic traps will be applied for quantum simulations, for fundamental investigations concerning large-scale entanglement and for precision measurements enhanced by quantum metrology techniques employing entangled particles.
Max ERC Funding
2 200 000 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym FLOODCHANGE
Project Deciphering River Flood Change
Researcher (PI) Guenter Bloeschl
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary Many major and devastating floods have occurred around the world recently. Their number and magnitude seems to have increased but such changes are not clear. More surprisingly, the exact causes of changes remain a mystery. Although, drivers such as climate and land use change are known to play a critical role, their complex interactions in flood generation have not been disentangled.
The main objectives of this project are to understand how changes in land use and climate translate into changes in river floods, what are the factors controlling this relationship and what are the uncertainties involved. We decipher the relationship between changes in floods and their drivers by analysing the processes separately for different flood types such as flash floods, rain-on-snow floods and large scale synoptic floods. We then use data from catchments in transects across Europe to build a probabilistic flood-change model that explicitly describes the change mechanisms. The model is unconventional as it does not take a reductionist approach but conceptualises the dominant flood change processes at the catchment scale. We test the model on long high-quality flood data series. We use the model as well as the temporal and spatial data variability to quantify the sensitivity of floods to climate and land use change and estimate the uncertainties involved. The data are already available to me or will be made available through my excellent contacts in Europe.
For the first time, it will be possible to systematise the effects of land use and climate on floods which will provide a vital step towards predicting how floods will change in the future.
Summary
Many major and devastating floods have occurred around the world recently. Their number and magnitude seems to have increased but such changes are not clear. More surprisingly, the exact causes of changes remain a mystery. Although, drivers such as climate and land use change are known to play a critical role, their complex interactions in flood generation have not been disentangled.
The main objectives of this project are to understand how changes in land use and climate translate into changes in river floods, what are the factors controlling this relationship and what are the uncertainties involved. We decipher the relationship between changes in floods and their drivers by analysing the processes separately for different flood types such as flash floods, rain-on-snow floods and large scale synoptic floods. We then use data from catchments in transects across Europe to build a probabilistic flood-change model that explicitly describes the change mechanisms. The model is unconventional as it does not take a reductionist approach but conceptualises the dominant flood change processes at the catchment scale. We test the model on long high-quality flood data series. We use the model as well as the temporal and spatial data variability to quantify the sensitivity of floods to climate and land use change and estimate the uncertainties involved. The data are already available to me or will be made available through my excellent contacts in Europe.
For the first time, it will be possible to systematise the effects of land use and climate on floods which will provide a vital step towards predicting how floods will change in the future.
Max ERC Funding
2 263 565 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym GEMIS
Project Generalized Homological Mirror Symmetry and Applications
Researcher (PI) Ludmil Katzarkov
Host Institution (HI) UNIVERSITAT WIEN
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Mirror symmetry arose originally in physics, as a duality between $N = 2$ superconformal field theories. Witten formulated a more mathematically accessible version, in terms of topological field theories. Both conformal and topological field theories can be defined axiomatically, but more interestingly, there are several geometric ways of constructing them. A priori, the mirror correspondence is not unique, and it does not necessarily remain within a single class of geometric models. The classical case relates $\sigma$-models, but in a more modern formulation, one has mirror dualities between different Landau-Ginzburg models, as well as between such models and $\sigma$-models; orbifolds should also be included in this. The simplest example would be the function $W: \C \rightarrow \C$, $W(x) = x^{n+1}$, which is self-mirror (up to dividing by the $\bZ/n+1$ symmetry group, in an orbifold sense). While the mathematics of the $\sigma$-model mirror correspondence is familiar by now, generalizations to Landau-Ginzburg theories are only beginning to be understood. Today it is clear that Homologcal Mirror Symmetry (HMS) as a categorical correspondence works and it is time for developing direct geometric applications to classical problems - rationality of algebraic varieties and Hodge conjecture. This the main goal of the proposal. But in order to attack the above problems we need to generalize HMS and explore its connection to new developments in modern Hodge theory. In order to carry the above program we plan to further already working team Vienna, Paris, Moscow, MIT.
Summary
Mirror symmetry arose originally in physics, as a duality between $N = 2$ superconformal field theories. Witten formulated a more mathematically accessible version, in terms of topological field theories. Both conformal and topological field theories can be defined axiomatically, but more interestingly, there are several geometric ways of constructing them. A priori, the mirror correspondence is not unique, and it does not necessarily remain within a single class of geometric models. The classical case relates $\sigma$-models, but in a more modern formulation, one has mirror dualities between different Landau-Ginzburg models, as well as between such models and $\sigma$-models; orbifolds should also be included in this. The simplest example would be the function $W: \C \rightarrow \C$, $W(x) = x^{n+1}$, which is self-mirror (up to dividing by the $\bZ/n+1$ symmetry group, in an orbifold sense). While the mathematics of the $\sigma$-model mirror correspondence is familiar by now, generalizations to Landau-Ginzburg theories are only beginning to be understood. Today it is clear that Homologcal Mirror Symmetry (HMS) as a categorical correspondence works and it is time for developing direct geometric applications to classical problems - rationality of algebraic varieties and Hodge conjecture. This the main goal of the proposal. But in order to attack the above problems we need to generalize HMS and explore its connection to new developments in modern Hodge theory. In order to carry the above program we plan to further already working team Vienna, Paris, Moscow, MIT.
Max ERC Funding
1 060 800 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym HBAR-HFS
Project Hyperfine structure of antihydrogen
Researcher (PI) Eberhard Widmann
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Advanced Grant (AdG), PE2, ERC-2011-ADG_20110209
Summary Antihydrogen is the simplest atom consisting entirely of antimatter. Since its counterpart hydrogen is one of the best studied atoms in physics, a comparison of antihydrogen and hydrogen offers one of the most sensitive tests of CPT symmetry. CPT, the successive application of charge conjugation, parity and time reversal transformation is a fundamental symmetry conserved in the standard model (SM) of particle physics as a consequence of a mathematical theorem. These conditions for this theorem to be fulfilled are not valid any more in extensions of the SM like string theory or quantum gravity. Furthermore, even a tiny violation of CPT symmetry at the time of the big bang could be a cause of the observed antimatter absence in the universe. Thus the observation of CPT violation might offer a first indication for the validity of string theory, and would have important cosmological consequences.
This project proposes to measure the ground state hyperfine (HFS) splitting of antihydrogen (HBAR), which is known in hydrogen with relative precision of 10^–12. The experimental method pursued within the ASACUSA collaboration at CERN-AD consists in the formation of an antihydrogen beam and a measurement using a spin-flip cavity and a sextupole magnet as spin analyser like it was done initially for hydrogen. A major milestone was achieved in 2010 when antihydrogen was first synthesized by ASACUSA. In the first phase of this proposal, an antihydrogen beam will be produced and the HBAR-HFS will be measured to a precision of around 10^–7 using a single microwave cavity. In a second phase, the Ramsey method of separated oscillatory fields will be used to increase the precision further. In parallel methods will be developed towards trapping and laser cooling the antihydrogen atoms. Letting the cooled antihydrogen escape in a field free region and perform microwave spectroscopy offers the ultimate precision achievable to measure the HBAR-HFS and one of the most sensitive tests of CPT.
Summary
Antihydrogen is the simplest atom consisting entirely of antimatter. Since its counterpart hydrogen is one of the best studied atoms in physics, a comparison of antihydrogen and hydrogen offers one of the most sensitive tests of CPT symmetry. CPT, the successive application of charge conjugation, parity and time reversal transformation is a fundamental symmetry conserved in the standard model (SM) of particle physics as a consequence of a mathematical theorem. These conditions for this theorem to be fulfilled are not valid any more in extensions of the SM like string theory or quantum gravity. Furthermore, even a tiny violation of CPT symmetry at the time of the big bang could be a cause of the observed antimatter absence in the universe. Thus the observation of CPT violation might offer a first indication for the validity of string theory, and would have important cosmological consequences.
This project proposes to measure the ground state hyperfine (HFS) splitting of antihydrogen (HBAR), which is known in hydrogen with relative precision of 10^–12. The experimental method pursued within the ASACUSA collaboration at CERN-AD consists in the formation of an antihydrogen beam and a measurement using a spin-flip cavity and a sextupole magnet as spin analyser like it was done initially for hydrogen. A major milestone was achieved in 2010 when antihydrogen was first synthesized by ASACUSA. In the first phase of this proposal, an antihydrogen beam will be produced and the HBAR-HFS will be measured to a precision of around 10^–7 using a single microwave cavity. In a second phase, the Ramsey method of separated oscillatory fields will be used to increase the precision further. In parallel methods will be developed towards trapping and laser cooling the antihydrogen atoms. Letting the cooled antihydrogen escape in a field free region and perform microwave spectroscopy offers the ultimate precision achievable to measure the HBAR-HFS and one of the most sensitive tests of CPT.
Max ERC Funding
2 599 900 €
Duration
Start date: 2012-03-01, End date: 2017-02-28
Project acronym ICEMASS
Project Global Glacier Mass Continuity
Researcher (PI) Hans Andreas Max Kääb
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE10, ERC-2012-ADG_20120216
Summary For the first time in history satellite data and respective archive holdings are now sufficient in terms of their spatial and temporal resolution, and their accuracy, to measure volume changes, velocities and changes in these velocities over time for glaciers and ice caps other than ice sheets on a global scale.
The ICEMASS project will derive and analyse glacier thickness changes using satellite laser and radar altimetry, and satellite-derived and other digital elevation models, and convert these to a global glacier mass budget. Such data set will enable major steps forward in glacier and Earth science, in particular: constrain current sea-level contribution from glaciers; complete climate change patterns as reflected in glacier mass changes; quantify the contribution of glacier imbalance to river run-off; allow to separate glacier mass loss from other components of gravity changes as detected through satellite gravimetry; and allow improved modelling of the isostatic uplift component due to current changes in glacier load.
These results will be connected to global-scale glacier dynamics, for which a global set of repeat optical and radar satellite images will be processed to measure displacements due to glacier flow and their annual to decadal-scale changes. The analysis of these data will enable several major steps forward in glacier and Earth science, in particular: progress the understanding of glacier response to climate and its changes; provide new insights in processes underlying spatio-temporal variability and instability of glacier flow on decadal scales; improve understanding of dynamic thickness change effects; allow estimating global calving fluxes; progress understanding of transport in glaciers and their role in landscape development; and help to better assess potentially hazardous glacier lakes.
Summary
For the first time in history satellite data and respective archive holdings are now sufficient in terms of their spatial and temporal resolution, and their accuracy, to measure volume changes, velocities and changes in these velocities over time for glaciers and ice caps other than ice sheets on a global scale.
The ICEMASS project will derive and analyse glacier thickness changes using satellite laser and radar altimetry, and satellite-derived and other digital elevation models, and convert these to a global glacier mass budget. Such data set will enable major steps forward in glacier and Earth science, in particular: constrain current sea-level contribution from glaciers; complete climate change patterns as reflected in glacier mass changes; quantify the contribution of glacier imbalance to river run-off; allow to separate glacier mass loss from other components of gravity changes as detected through satellite gravimetry; and allow improved modelling of the isostatic uplift component due to current changes in glacier load.
These results will be connected to global-scale glacier dynamics, for which a global set of repeat optical and radar satellite images will be processed to measure displacements due to glacier flow and their annual to decadal-scale changes. The analysis of these data will enable several major steps forward in glacier and Earth science, in particular: progress the understanding of glacier response to climate and its changes; provide new insights in processes underlying spatio-temporal variability and instability of glacier flow on decadal scales; improve understanding of dynamic thickness change effects; allow estimating global calving fluxes; progress understanding of transport in glaciers and their role in landscape development; and help to better assess potentially hazardous glacier lakes.
Max ERC Funding
2 395 320 €
Duration
Start date: 2013-03-01, End date: 2019-02-28
Project acronym INNOSTOCH
Project INNOVATIONS IN STOCHASTIC ANALYSIS AND APPLICATIONS with emphasis on STOCHASTIC CONTROL AND INFORMATION
Researcher (PI) Bernt Karsten Øksendal
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary "For almost all kinds of dynamic systems modeling real processes in nature or society, most of the mathematical models we can formulate are - at best - inaccurate, and subject to random fluctuations and other types of ""noise"". Therefore it is important to be able to deal with such noisy models in a mathematically rigorous way. This rigorous theory is stochastic analysis. Theoretical progress in stochastic analysis will lead to new and improved applications in a wide range of fields.
The main purpose of this proposal is to establish a research environment which enhances the creation of new ideas and methods in the research of stochastic analysis and its applications. The emphasis is more on innovation, new models and challenges in the research frontiers, rather than small variations and minor improvements of already established theories and results. We will concentrate on applications in finance and biology, but the theoretical results may as well apply to several other areas.
Utilizing recent results and achievements by PI and a large group of distinguished coworkers, the natural extensions from the present knowledge is to concentrate on the mathematical theory of the interplay between stochastic analysis, stochastic control and information. More precisely, we have ambitions to make fundamental progress in the general theory of stochastic control of random systems and applications in finance and biology, and the explicit relation between the optimal performance and the amount of information available to the controller. Explicit examples of special interest include optimal control under partial or delayed information, and optimal control under inside or advanced information. A success of the present proposal will represent a substantial breakthrough, and in turn bring us a significant step forward in our attempts to understand various aspects of the world better, and it will help us to find optimal, sustainable ways to influence it."
Summary
"For almost all kinds of dynamic systems modeling real processes in nature or society, most of the mathematical models we can formulate are - at best - inaccurate, and subject to random fluctuations and other types of ""noise"". Therefore it is important to be able to deal with such noisy models in a mathematically rigorous way. This rigorous theory is stochastic analysis. Theoretical progress in stochastic analysis will lead to new and improved applications in a wide range of fields.
The main purpose of this proposal is to establish a research environment which enhances the creation of new ideas and methods in the research of stochastic analysis and its applications. The emphasis is more on innovation, new models and challenges in the research frontiers, rather than small variations and minor improvements of already established theories and results. We will concentrate on applications in finance and biology, but the theoretical results may as well apply to several other areas.
Utilizing recent results and achievements by PI and a large group of distinguished coworkers, the natural extensions from the present knowledge is to concentrate on the mathematical theory of the interplay between stochastic analysis, stochastic control and information. More precisely, we have ambitions to make fundamental progress in the general theory of stochastic control of random systems and applications in finance and biology, and the explicit relation between the optimal performance and the amount of information available to the controller. Explicit examples of special interest include optimal control under partial or delayed information, and optimal control under inside or advanced information. A success of the present proposal will represent a substantial breakthrough, and in turn bring us a significant step forward in our attempts to understand various aspects of the world better, and it will help us to find optimal, sustainable ways to influence it."
Max ERC Funding
1 864 800 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym OXIDESURFACES
Project Microscopic Processes and Phenomena at Oxide Surfaces and Interfaces
Researcher (PI) Ulrike Diebold
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary Metal oxide surfaces and interfaces play a key role in energy-related applications and in novel schemes for electronic devices that exploit the special physical and chemical properties of these promising materials.
For progress in both areas, a detailed, mechanistic understanding of the atomic and molecular processes that occur at oxide surfaces and interfaces is critical. Experiments on well-characterized model systems in conjunction with computational modelling can provide such insights, but current investigations are limited in the range of materials and scope of phenomena that can be studied, and to experiments in a low-pressure environment.
Research conducted in this project will push these limits by:
• Developing new methodologies for atomic-scale investigations of the subsurface region of oxides with mixed electronic and ionic conduction to measure mass and charge transport across oxide interfaces.
• Combining cutting-edge molecular beam epitaxy techniques with atomically-resolved scanning tunneling microscopy to synthesize samples of multi-component metal oxide materials with tailored surface properties.
• Establishing a new research thrust that will combine both ex-situ and in-situ electrochemical surface science techniques to study structurally well characterized metal oxide surfaces in an aqueous environment.
Summary
Metal oxide surfaces and interfaces play a key role in energy-related applications and in novel schemes for electronic devices that exploit the special physical and chemical properties of these promising materials.
For progress in both areas, a detailed, mechanistic understanding of the atomic and molecular processes that occur at oxide surfaces and interfaces is critical. Experiments on well-characterized model systems in conjunction with computational modelling can provide such insights, but current investigations are limited in the range of materials and scope of phenomena that can be studied, and to experiments in a low-pressure environment.
Research conducted in this project will push these limits by:
• Developing new methodologies for atomic-scale investigations of the subsurface region of oxides with mixed electronic and ionic conduction to measure mass and charge transport across oxide interfaces.
• Combining cutting-edge molecular beam epitaxy techniques with atomically-resolved scanning tunneling microscopy to synthesize samples of multi-component metal oxide materials with tailored surface properties.
• Establishing a new research thrust that will combine both ex-situ and in-situ electrochemical surface science techniques to study structurally well characterized metal oxide surfaces in an aqueous environment.
Max ERC Funding
2 496 100 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym Probiotiqus
Project Processing of biomolecular targets for interferometric quantum experiments
Researcher (PI) Markus Arndt
Host Institution (HI) UNIVERSITAT WIEN
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Recent studies in Vienna have shown that surprising quantum phenomena, such as matter-wave interferometry with molecules composed of hundreds of covalently bound atoms, are actually feasible.
PROBIOTIQUS will now be the first project world-wide to develop experimental tools for matter-wave physics with large biomolecules from amino acid clusters up to proteins and self-replicating molecules.
First, we shall exploit the full potential of coherent molecule metrology for biomolecules, and molecules in a biomimetic environment. This research connects quantum physics with chemistry and biophysics, since already a restricted number of precisely determined geometrical, electrical, magnetic or optical properties may provide tell-tale analytical information. Embedding the biomolecules in a hydrate layer will allow us to study their properties in a context that approaches the ‘natural’ environment.
Second, we will develop molecular beam methods, optical manipulation tools and detection schemes to prepare proteins and other large biomolecules for advanced quantum experiments. This includes new laser-assisted acoustic and thermal volatilization methods, slowing and focusing in optical forces, diffraction at ionization and neutralization gratings as well as tagging of proteins with ionizable small biomolecules.
Third, we will prepare a cryogenic biomolecular sample in a buffer-gas loaded ion trap, where optical ionization and neutralization will be optimized in order to enable optical diffraction gratings. The target temperature of 10 K will be the starting point for interference experiments with proteins and self-replicating RNA, on the way towards full viruses.
Quantum interference with large biomolecules at the edge to life has remained an outstanding challenge throughout the last two decades. The ERC advanced grant will now focus on this goal with novel and interdisciplinary strategies, in world-wide unique experiments.
Summary
Recent studies in Vienna have shown that surprising quantum phenomena, such as matter-wave interferometry with molecules composed of hundreds of covalently bound atoms, are actually feasible.
PROBIOTIQUS will now be the first project world-wide to develop experimental tools for matter-wave physics with large biomolecules from amino acid clusters up to proteins and self-replicating molecules.
First, we shall exploit the full potential of coherent molecule metrology for biomolecules, and molecules in a biomimetic environment. This research connects quantum physics with chemistry and biophysics, since already a restricted number of precisely determined geometrical, electrical, magnetic or optical properties may provide tell-tale analytical information. Embedding the biomolecules in a hydrate layer will allow us to study their properties in a context that approaches the ‘natural’ environment.
Second, we will develop molecular beam methods, optical manipulation tools and detection schemes to prepare proteins and other large biomolecules for advanced quantum experiments. This includes new laser-assisted acoustic and thermal volatilization methods, slowing and focusing in optical forces, diffraction at ionization and neutralization gratings as well as tagging of proteins with ionizable small biomolecules.
Third, we will prepare a cryogenic biomolecular sample in a buffer-gas loaded ion trap, where optical ionization and neutralization will be optimized in order to enable optical diffraction gratings. The target temperature of 10 K will be the starting point for interference experiments with proteins and self-replicating RNA, on the way towards full viruses.
Quantum interference with large biomolecules at the edge to life has remained an outstanding challenge throughout the last two decades. The ERC advanced grant will now focus on this goal with novel and interdisciplinary strategies, in world-wide unique experiments.
Max ERC Funding
2 266 904 €
Duration
Start date: 2013-04-01, End date: 2018-03-31