Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomáš Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 9 SALT
Project Reassessing Ninth Century Philosophy. A Synchronic Approach to the Logical Traditions
Researcher (PI) Christophe Florian Erismann
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Summary
This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Max ERC Funding
1 998 566 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ABINITIODGA
Project Ab initio Dynamical Vertex Approximation
Researcher (PI) Karsten Held
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Summary
Some of the most fascinating physical phenomena are experimentally observed in strongly correlated electron systems and, on the theoretical side, only poorly understood hitherto. The aim of the ERC project AbinitioDGA is the development, implementation and application of a new, 21th century method for the ab initio calculation of materials with such strong electronic correlations. AbinitioDGA includes strong electronic correlations on all time and length scales and hence is a big step beyond the state-of-the-art methods, such as the local density approximation, dynamical mean field theory, and the GW approach (Green function G times screened interaction W). It has the potential for an extraordinary high impact not only in the field of computational materials science but also for a better understanding of quantum critical heavy fermion systems, high-temperature superconductors, and transport through nano- and heterostructures. These four physical problems and related materials will be studied within the ERC project, besides the methodological development.
On the technical side, AbinitioDGA realizes Hedin's idea to include vertex corrections beyond the GW approximation. All vertex corrections which can be traced back to a fully irreducible local vertex and the bare non-local Coulomb interaction are included. This way, AbinitioDGA does not only contain the GW physics of screened exchange and the strong local correlations of dynamical mean field theory but also non-local correlations beyond on all length scales. Through the latter, AbinitioDGA can prospectively describe phenomena such as quantum criticality, spin-fluctuation mediated superconductivity, and weak localization corrections to the conductivity. Nonetheless, the computational effort is still manageable even for realistic materials calculations, making the considerable effort to implement AbinitioDGA worthwhile.
Max ERC Funding
1 491 090 €
Duration
Start date: 2013-01-01, End date: 2018-07-31
Project acronym ACQDIV
Project Acquisition processes in maximally diverse languages: Min(d)ing the ambient language
Researcher (PI) Sabine Erika Stoll
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary "Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Summary
"Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Max ERC Funding
1 998 438 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ACTIVENP
Project Active and low loss nano photonics (ActiveNP)
Researcher (PI) Thomas Arno Klar
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Summary
This project aims at designing novel hybrid nanophotonic devices comprising metallic nanostructures and active elements such as dye molecules or colloidal quantum dots. Three core objectives, each going far beyond the state of the art, shall be tackled: (i) Metamaterials containing gain materials: Metamaterials introduce magnetism to the optical frequency range and hold promise to create entirely novel devices for light manipulation. Since present day metamaterials are extremely absorptive, it is of utmost importance to fight losses. The ground-breaking approach of this proposal is to incorporate fluorescing species into the nanoscale metallic metastructures in order to compensate losses by stimulated emission. (ii) The second objective exceeds the ansatz of compensating losses and will reach out for lasing action. Individual metallic nanostructures such as pairs of nanoparticles will form novel and unusual nanometre sized resonators for laser action. State of the art microresonators still have a volume of at least half of the wavelength cubed. Noble metal nanoparticle resonators scale down this volume by a factor of thousand allowing for truly nanoscale coherent light sources. (iii) A third objective concerns a substantial improvement of nonlinear effects. This will be accomplished by drastically sharpened resonances of nanoplasmonic devices surrounded by active gain materials. An interdisciplinary team of PhD students and a PostDoc will be assembled, each scientist being uniquely qualified to cover one of the expertise fields: Design, spectroscopy, and simulation. The project s outcome is twofold: A substantial expansion of fundamental understanding of nanophotonics and practical devices such as nanoscopic lasers and low loss metamaterials.
Max ERC Funding
1 494 756 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym AMBH
Project Ancient Music Beyond Hellenisation
Researcher (PI) Stefan HAGEL
Host Institution (HI) OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary From medieval times, Arabic as well as European music was analysed in terms that were inherited from Classical Antiquity and had thus developed in a very different music culture. In spite of recent breakthroughs in the understanding of the latter, whose technicalities we access not only through texts and iconography, but also through instrument finds and surviving notated melodies, its relation to music traditions known from later periods and different places is almost uncharted territory.
The present project explores relations between Hellenic/Hellenistic music as pervaded the theatres and concert halls throughout and beyond the Roman empire, Near Eastern traditions – from the diatonic system emerging from cuneiform sources to the flourishing musical world of the caliphates – and, as far as possible, African musical life south of Egypt as well – a region that maintained close ties both with the Hellenised culture of its northern neighbours and with the Arabian Peninsula.
On the one hand, this demands collaboration between Classical Philology and Arabic Studies, extending methods recently developed within music archaeological research related to the Classical Mediterranean. Arabic writings need to be examined in close reading, using recent insights into the interplay between ancient music theory and practice, in order to segregate the influence of Greek thinking from ideas and facts that must relate to contemporaneous ‘Arabic’ music-making. In this way we hope better to define the relation of this tradition to the ‘Classical world’, potentially breaking free of Orientalising bias informing modern views. On the other hand, the study and reconstruction, virtual and material, of wind instruments of Hellenistic pedigree but found outside the confinements of the Hellenistic ‘heartlands’ may provide evidence of ‘foreign’ tonality employed in those regions – specifically the royal city of Meroë in modern Sudan and the Oxus Temple in modern Tajikistan.
Summary
From medieval times, Arabic as well as European music was analysed in terms that were inherited from Classical Antiquity and had thus developed in a very different music culture. In spite of recent breakthroughs in the understanding of the latter, whose technicalities we access not only through texts and iconography, but also through instrument finds and surviving notated melodies, its relation to music traditions known from later periods and different places is almost uncharted territory.
The present project explores relations between Hellenic/Hellenistic music as pervaded the theatres and concert halls throughout and beyond the Roman empire, Near Eastern traditions – from the diatonic system emerging from cuneiform sources to the flourishing musical world of the caliphates – and, as far as possible, African musical life south of Egypt as well – a region that maintained close ties both with the Hellenised culture of its northern neighbours and with the Arabian Peninsula.
On the one hand, this demands collaboration between Classical Philology and Arabic Studies, extending methods recently developed within music archaeological research related to the Classical Mediterranean. Arabic writings need to be examined in close reading, using recent insights into the interplay between ancient music theory and practice, in order to segregate the influence of Greek thinking from ideas and facts that must relate to contemporaneous ‘Arabic’ music-making. In this way we hope better to define the relation of this tradition to the ‘Classical world’, potentially breaking free of Orientalising bias informing modern views. On the other hand, the study and reconstruction, virtual and material, of wind instruments of Hellenistic pedigree but found outside the confinements of the Hellenistic ‘heartlands’ may provide evidence of ‘foreign’ tonality employed in those regions – specifically the royal city of Meroë in modern Sudan and the Oxus Temple in modern Tajikistan.
Max ERC Funding
775 959 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ANGULON
Project Angulon: physics and applications of a new quasiparticle
Researcher (PI) Mikhail Lemeshko
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Summary
This project aims to develop a universal approach to angular momentum in quantum many-body systems based on the angulon quasiparticle recently discovered by the PI. We will establish a general theory of angulons in and out of equilibrium, and apply it to a variety of experimentally studied problems, ranging from chemical dynamics in solvents to solid-state systems (e.g. angular momentum transfer in the Einstein-de Haas effect and ultrafast magnetism).
The concept of angular momentum is ubiquitous across physics, whether one deals with nuclear collisions, chemical reactions, or formation of galaxies. In the microscopic world, quantum rotations are described by non-commuting operators. This makes the angular momentum theory extremely involved, even for systems consisting of only a few interacting particles, such as gas-phase atoms or molecules.
Furthermore, in most experiments the behavior of quantum particles is inevitably altered by a many-body environment of some kind. For example, molecular rotation – and therefore reactivity – depends on the presence of a solvent, electronic angular momentum in solids is coupled to lattice phonons, highly excited atomic levels can be perturbed by a surrounding ultracold gas. If approached in a brute-force fashion, understanding angular momentum in such systems is an impossible task, since a macroscopic number of particles is involved.
Recently, the PI and his team have shown that this challenge can be met by introducing a new quasiparticle – the angulon. In 2017, the PI has demonstrated the existence of angulons by comparing his theory with 20 years of measurements on molecules rotating in superfluids. Most importantly, the angulon concept allows one to gain analytical insights inaccessible to the state-of-the-art techniques of condensed matter and chemical physics. The angulon approach holds the promise of opening up a new interdisciplinary research area with applications reaching far beyond what is proposed here.
Max ERC Funding
1 499 588 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym AQSuS
Project Analog Quantum Simulation using Superconducting Qubits
Researcher (PI) Gerhard KIRCHMAIR
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Summary
AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Max ERC Funding
1 498 515 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ARTIVISM
Project Art and Activism : Creativity and Performance as Subversive Forms of Political Expression in Super-Diverse Cities
Researcher (PI) Monika Salzbrunn
Host Institution (HI) UNIVERSITE DE LAUSANNE
Call Details Consolidator Grant (CoG), SH5, ERC-2015-CoG
Summary ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Summary
ARTIVISM aims at exploring new artistic forms of political expression under difficult, precarious and/or oppressive conditions. It asks how social actors create belonging and multiple forms of resistance when they use art in activism or activism in art. What kind of alliances do these two forms of social practices generate in super-diverse places, in times of crisis and in precarious situations? Thus, ARTIVISM seeks to understand how social actors engage artistically in order to bring about social, economic and political change. Going beyond former research in urban and migration studies, and beyond the anthropology of art, ARTIVISM focuses on a broad range of artistic tools, styles and means of expression, namely festive events and parades, cartoons and comics and street art. By articulating performance studies, street anthropology and the sociology of celebration with migration and diversity studies, the project challenges former concepts, which took stable social groups for granted and reified them with ethnic lenses. The applied methodology considerably renews the field by bringing together event-, actor- and condition-centred approaches and a multi-sensory framework. Besides its multidisciplinary design, the ground-breaking nature of ARTIVISM lies in the application of the core concepts of performativity and liminality, as well as in an examination of the way to advance and refine these concepts and to create new analytical tools to respond to recent social phenomena. We have developed and tested innovative methods that respond to a postmodern type of fluid and temporary social action: audio-visual ethnography, urban event ethnography, street ethnography, field-crossing, and sensory ethnography (apprenticeship). Therefore, ARTIVISM develops new methods and theories in order to introduce a multi-faceted trans-disciplinary approach to the study of an emerging field of social transformations that is of challenging significance to the social sciences.
Max ERC Funding
1 999 287 €
Duration
Start date: 2016-09-01, End date: 2021-08-31