Project acronym AI4REASON
Project Artificial Intelligence for Large-Scale Computer-Assisted Reasoning
Researcher (PI) Josef Urban
Host Institution (HI) CESKE VYSOKE UCENI TECHNICKE V PRAZE
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary The goal of the AI4REASON project is a breakthrough in what is considered a very hard problem in AI and automation of reasoning, namely the problem of automatically proving theorems in large and complex theories. Such complex formal theories arise in projects aimed at verification of today's advanced mathematics such as the Formal Proof of the Kepler Conjecture (Flyspeck), verification of software and hardware designs such as the seL4 operating system kernel, and verification of other advanced systems and technologies on which today's information society critically depends.
It seems extremely complex and unlikely to design an explicitly programmed solution to the problem. However, we have recently demonstrated that the performance of existing approaches can be multiplied by data-driven AI methods that learn reasoning guidance from large proof corpora. The breakthrough will be achieved by developing such novel AI methods. First, we will devise suitable Automated Reasoning and Machine Learning methods that learn reasoning knowledge and steer the reasoning processes at various levels of granularity. Second, we will combine them into autonomous self-improving AI systems that interleave deduction and learning in positive feedback loops. Third, we will develop approaches that aggregate reasoning knowledge across many formal, semi-formal and informal corpora and deploy the methods as strong automation services for the formal proof community.
The expected outcome is our ability to prove automatically at least 50% more theorems in high-assurance projects such as Flyspeck and seL4, bringing a major breakthrough in formal reasoning and verification. As an AI effort, the project offers a unique path to large-scale semantic AI. The formal corpora concentrate centuries of deep human thinking in a computer-understandable form on which deductive and inductive AI can be combined and co-evolved, providing new insights into how humans do mathematics and science.
Summary
The goal of the AI4REASON project is a breakthrough in what is considered a very hard problem in AI and automation of reasoning, namely the problem of automatically proving theorems in large and complex theories. Such complex formal theories arise in projects aimed at verification of today's advanced mathematics such as the Formal Proof of the Kepler Conjecture (Flyspeck), verification of software and hardware designs such as the seL4 operating system kernel, and verification of other advanced systems and technologies on which today's information society critically depends.
It seems extremely complex and unlikely to design an explicitly programmed solution to the problem. However, we have recently demonstrated that the performance of existing approaches can be multiplied by data-driven AI methods that learn reasoning guidance from large proof corpora. The breakthrough will be achieved by developing such novel AI methods. First, we will devise suitable Automated Reasoning and Machine Learning methods that learn reasoning knowledge and steer the reasoning processes at various levels of granularity. Second, we will combine them into autonomous self-improving AI systems that interleave deduction and learning in positive feedback loops. Third, we will develop approaches that aggregate reasoning knowledge across many formal, semi-formal and informal corpora and deploy the methods as strong automation services for the formal proof community.
The expected outcome is our ability to prove automatically at least 50% more theorems in high-assurance projects such as Flyspeck and seL4, bringing a major breakthrough in formal reasoning and verification. As an AI effort, the project offers a unique path to large-scale semantic AI. The formal corpora concentrate centuries of deep human thinking in a computer-understandable form on which deductive and inductive AI can be combined and co-evolved, providing new insights into how humans do mathematics and science.
Max ERC Funding
1 499 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym CHOBOTIX
Project Chemical Processing by Swarm Robotics
Researcher (PI) Frantisek Stepanek
Host Institution (HI) VYSOKA SKOLA CHEMICKO-TECHNOLOGICKA V PRAZE
Call Details Starting Grant (StG), PE6, ERC-2007-StG
Summary The aim of the project is to develop chemical processing systems based on the principle of swarm robotics. The inspiration for swarm robotics comes from the behaviour of collective organisms – such as bees or ants – that can perform complex tasks by the combined actions of a large number of relatively simple, identical agents. The main scientific challenge of the project will be the design and synthesis of chemical swarm robots (“chobots”), which we envisage as internally structured particulate entities in the 10-100 µm size range that can move in their environment, selectively exchange molecules with their surrounding in response to a local change in temperature or concentration, chemically process those molecules and either accumulate or release the product. Such chemically active autonomous entities can be viewed as very simple pre-biotic life forms, although without the ability to self-replicate or evolve. In the course of the project, the following topics will be explored in detail: (i) the synthesis of suitable shells for chemically active swarm robots, both soft (with a flexible membrane) and hard (porous solid shells); (ii) the mechanisms of molecular transport into and out of such shells and means of its active control; (iii) chemical reaction kinetics in spatially complex compartmental structures within the shells; (iv) collective behaviour of chemical swarm robots and their response to external stimuli. The project will be carried out by a multi-disciplinary team of enthusiastic young researchers and the concepts and technologies developed in course of the project, as well as the advancements in the fundamental understanding of the behaviour of “chemical robots” and their functional sub-systems, will open up new opportunities in diverse areas including next-generation distributed chemical processing, synthesis and delivery of personalised medicines, recovery of valuable chemicals from dilute resources, environmental clean-up, and others.
Summary
The aim of the project is to develop chemical processing systems based on the principle of swarm robotics. The inspiration for swarm robotics comes from the behaviour of collective organisms – such as bees or ants – that can perform complex tasks by the combined actions of a large number of relatively simple, identical agents. The main scientific challenge of the project will be the design and synthesis of chemical swarm robots (“chobots”), which we envisage as internally structured particulate entities in the 10-100 µm size range that can move in their environment, selectively exchange molecules with their surrounding in response to a local change in temperature or concentration, chemically process those molecules and either accumulate or release the product. Such chemically active autonomous entities can be viewed as very simple pre-biotic life forms, although without the ability to self-replicate or evolve. In the course of the project, the following topics will be explored in detail: (i) the synthesis of suitable shells for chemically active swarm robots, both soft (with a flexible membrane) and hard (porous solid shells); (ii) the mechanisms of molecular transport into and out of such shells and means of its active control; (iii) chemical reaction kinetics in spatially complex compartmental structures within the shells; (iv) collective behaviour of chemical swarm robots and their response to external stimuli. The project will be carried out by a multi-disciplinary team of enthusiastic young researchers and the concepts and technologies developed in course of the project, as well as the advancements in the fundamental understanding of the behaviour of “chemical robots” and their functional sub-systems, will open up new opportunities in diverse areas including next-generation distributed chemical processing, synthesis and delivery of personalised medicines, recovery of valuable chemicals from dilute resources, environmental clean-up, and others.
Max ERC Funding
1 644 000 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym CHROMTISOL
Project Towards New Generation of Solid-State Photovoltaic Cell: Harvesting Nanotubular Titania and Hybrid Chromophores
Researcher (PI) Jan Macak
Host Institution (HI) UNIVERZITA PARDUBICE
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary In photovoltaics (PVs), a significant scientific and technological attention has been given to technologies that have the potential to boost the solar-to-electricity conversion efficiency and to power recently unpowerable devices and objects. The research of various solar cell concepts for diversified applications (building integrated PVs, powering mobile devices) has recently resulted in many innovations. However, designs and concepts of solar cells fulfilling stringent criteria of efficiency, stability, low prize, flexibility, transparency, tunable cell size, esthetics, are still lacking.
Herein, the research focus is given to a new physical concept of a solar cell that explores extremely promising materials, yet unseen and unexplored in a joint device, whose combination may solve traditional solar cells drawbacks (carrier recombination, narrow light absorption).
It features a high surface area interface (higher than any other known PVs concept) based on ordered anodic TiO2 nanotube arrays, homogenously infilled with nanolayers of high absorption coefficient crystalline chalcogenide or organic chromophores using different techniques, yet unexplored for this purpose. After addition of supporting constituents, a solid-state solar cell with an extremely large incident area for the solar light absorption and optimized electron pathways will be created. The CHROMTISOL solar cell concept bears a large potential to outperform existing thin film photovoltaic technologies and concepts due to unique combination of materials and their complementary properties.
The project aims towards important scientific findings in highly interdisciplinary fields. Being extremely challenging and in the same time risky, it is based on feasible ideas and steps, that will result in exciting achievements.
The principal investigator, Jan Macak, has an outstanding research profile in the field of self-organized anodic nanostructures and is an experienced researcher in the photovoltaic field
Summary
In photovoltaics (PVs), a significant scientific and technological attention has been given to technologies that have the potential to boost the solar-to-electricity conversion efficiency and to power recently unpowerable devices and objects. The research of various solar cell concepts for diversified applications (building integrated PVs, powering mobile devices) has recently resulted in many innovations. However, designs and concepts of solar cells fulfilling stringent criteria of efficiency, stability, low prize, flexibility, transparency, tunable cell size, esthetics, are still lacking.
Herein, the research focus is given to a new physical concept of a solar cell that explores extremely promising materials, yet unseen and unexplored in a joint device, whose combination may solve traditional solar cells drawbacks (carrier recombination, narrow light absorption).
It features a high surface area interface (higher than any other known PVs concept) based on ordered anodic TiO2 nanotube arrays, homogenously infilled with nanolayers of high absorption coefficient crystalline chalcogenide or organic chromophores using different techniques, yet unexplored for this purpose. After addition of supporting constituents, a solid-state solar cell with an extremely large incident area for the solar light absorption and optimized electron pathways will be created. The CHROMTISOL solar cell concept bears a large potential to outperform existing thin film photovoltaic technologies and concepts due to unique combination of materials and their complementary properties.
The project aims towards important scientific findings in highly interdisciplinary fields. Being extremely challenging and in the same time risky, it is based on feasible ideas and steps, that will result in exciting achievements.
The principal investigator, Jan Macak, has an outstanding research profile in the field of self-organized anodic nanostructures and is an experienced researcher in the photovoltaic field
Max ERC Funding
1 644 380 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym D-FENS
Project Dicer-Dependent Defense in Mammals
Researcher (PI) Petr Svoboda
Host Institution (HI) USTAV MOLEKULARNI GENETIKY AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary Viral infection or retrotransposon expansion in the genome often result in production of double-stranded RNA (dsRNA). dsRNA can be intercepted by RNase III Dicer acting in the RNA interference (RNAi) pathway, an ancient eukaryotic defense mechanism. Notably, endogenous mammalian RNAi appears dormant while its common and unique physiological roles remain poorly understood. A factor underlying mammalian RNAi dormancy is inefficient processing of dsRNA by the full-length Dicer. Yet, a simple truncation of Dicer leads to hyperactive RNAi, which is naturally present in mouse oocytes.
The D-FENS project will use genetic animal models to define common, cell-specific and species-specific roles of mammalian RNAi. D-FENS has three complementary and synergizing objectives:
(1) Explore consequences of hyperactive RNAi in vivo. A mouse expressing a truncated Dicer will reveal at the organismal level any negative effect of hyperactive RNAi, the relationship between RNAi and mammalian immune system, and potential of RNAi to suppress viral infections in mammals.
(2) Define common and species-specific features of RNAi in the oocyte. Functional and bioinformatics analyses in mouse, bovine, and hamster oocytes will define rules and exceptions concerning endogenous RNAi roles, including RNAi contribution to maternal mRNA degradation and co-existence with the miRNA pathway.
(3) Uncover relationship between RNAi and piRNA pathways in suppression of retrotransposons. We hypothesize that hyperactive RNAi in mouse oocytes functionally complements the piRNA pathway, a Dicer-independent pathway suppressing retrotransposons in the germline. Using genetic models, we will explore unique and redundant roles of both pathways in the germline.
D-FENS will uncover physiological significance of the N-terminal part of Dicer, fundamentally improve understanding RNAi function in the germline, and provide a critical in vivo assessment of antiviral activity of RNAi with implications for human therapy.
Summary
Viral infection or retrotransposon expansion in the genome often result in production of double-stranded RNA (dsRNA). dsRNA can be intercepted by RNase III Dicer acting in the RNA interference (RNAi) pathway, an ancient eukaryotic defense mechanism. Notably, endogenous mammalian RNAi appears dormant while its common and unique physiological roles remain poorly understood. A factor underlying mammalian RNAi dormancy is inefficient processing of dsRNA by the full-length Dicer. Yet, a simple truncation of Dicer leads to hyperactive RNAi, which is naturally present in mouse oocytes.
The D-FENS project will use genetic animal models to define common, cell-specific and species-specific roles of mammalian RNAi. D-FENS has three complementary and synergizing objectives:
(1) Explore consequences of hyperactive RNAi in vivo. A mouse expressing a truncated Dicer will reveal at the organismal level any negative effect of hyperactive RNAi, the relationship between RNAi and mammalian immune system, and potential of RNAi to suppress viral infections in mammals.
(2) Define common and species-specific features of RNAi in the oocyte. Functional and bioinformatics analyses in mouse, bovine, and hamster oocytes will define rules and exceptions concerning endogenous RNAi roles, including RNAi contribution to maternal mRNA degradation and co-existence with the miRNA pathway.
(3) Uncover relationship between RNAi and piRNA pathways in suppression of retrotransposons. We hypothesize that hyperactive RNAi in mouse oocytes functionally complements the piRNA pathway, a Dicer-independent pathway suppressing retrotransposons in the germline. Using genetic models, we will explore unique and redundant roles of both pathways in the germline.
D-FENS will uncover physiological significance of the N-terminal part of Dicer, fundamentally improve understanding RNAi function in the germline, and provide a critical in vivo assessment of antiviral activity of RNAi with implications for human therapy.
Max ERC Funding
1 950 000 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DECOR
Project Dynamic assembly and exchange of RNA polymerase II CTD factors
Researcher (PI) Richard Stefl
Host Institution (HI) Masarykova univerzita
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) largest subunit coordinates co-transcriptional processing and it is decorated by many processing factors throughout the transcription cycle. The composition of this supramolecular assembly is diverse and highly dynamic. Many of the factors associate with RNAPII weakly and transiently, and the association is dictated by different post-translational modification patterns and conformational changes of the CTD. To determine how these accessory factors assemble and exchange on the CTD of RNAPII has remained a major challenge. Here, we aim to unravel the structural and mechanistic bases for the dynamic assembly of RNAPII CTD with its processing factors.
Using NMR, we will determine high-resolution structures of several protein factors bound to the CTD carrying specific modifications. This will enable to decode how CTD modification patterns stimulate or prevent binding of a given processing factor. We will also establish the structural and mechanistic bases of proline isomerisation in the CTD that control the timing of isomer-specific protein-protein interactions. Next, we will combine NMR and SAXS approaches to unravel how the overall CTD structure is remodelled by binding of multiple copies of processing factors and how these factors cross-talk with each other. Finally, we will elucidate a mechanistic basis for the exchange of processing factors on the CTD.
Our study will answer the long-standing questions of how the overall CTD structure is modulated on binding to processing factors, and whether these factors cross-talk and compete with each other. The level of detail that we aim to achieve is currently not available for any transient molecular assemblies of such complexity. In this respect, the project will also provide knowledge and methodology for further studies of large and highly flexible molecular assemblies that still remain poorly understood.
Summary
The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) largest subunit coordinates co-transcriptional processing and it is decorated by many processing factors throughout the transcription cycle. The composition of this supramolecular assembly is diverse and highly dynamic. Many of the factors associate with RNAPII weakly and transiently, and the association is dictated by different post-translational modification patterns and conformational changes of the CTD. To determine how these accessory factors assemble and exchange on the CTD of RNAPII has remained a major challenge. Here, we aim to unravel the structural and mechanistic bases for the dynamic assembly of RNAPII CTD with its processing factors.
Using NMR, we will determine high-resolution structures of several protein factors bound to the CTD carrying specific modifications. This will enable to decode how CTD modification patterns stimulate or prevent binding of a given processing factor. We will also establish the structural and mechanistic bases of proline isomerisation in the CTD that control the timing of isomer-specific protein-protein interactions. Next, we will combine NMR and SAXS approaches to unravel how the overall CTD structure is remodelled by binding of multiple copies of processing factors and how these factors cross-talk with each other. Finally, we will elucidate a mechanistic basis for the exchange of processing factors on the CTD.
Our study will answer the long-standing questions of how the overall CTD structure is modulated on binding to processing factors, and whether these factors cross-talk and compete with each other. The level of detail that we aim to achieve is currently not available for any transient molecular assemblies of such complexity. In this respect, the project will also provide knowledge and methodology for further studies of large and highly flexible molecular assemblies that still remain poorly understood.
Max ERC Funding
1 844 604 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym Diversity6continents
Project Ecological determinants of tropical-temperate trends in insect diversity
Researcher (PI) Vojtech Novotny
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Advanced Grant (AdG), LS8, ERC-2014-ADG
Summary The study will examine one of the most fundamental, yet poorly understood patterns of global biodiversity distribution: How can so many species coexist in a tropical forest? This key question of current ecology will be studied using quantitative surveys of plant-herbivore-parasitoid food webs within paired sets of tropical and temperate forests from six continents, in Papua New Guinea (PNG), Gabon, Panama, the Czech Republic, Japan, and USA, sampled using canopy cranes, truck-mounted elevated platforms and forest felling. This novel type of data will be analysed using a new rarefaction method, developed to test mechanistic explanations for biodiversity patterns along ecological gradients. It will evaluate competing hypotheses explaining latitudinal trends in insect herbivore diversity by the variation in either phylogenetic or functional diversity of plants, the host specificity of herbivores, or the diversity and specificity of their parasitoids and predators. The study will thus examine the importance of bottom-up (plants) and top-down (enemies) drivers of latitudinal trends in herbivore food webs, central to ecological theory that postulates the role of specialized herbivores as density-dependent agents of mortality involved in maintaining high tropical plant diversity. The project builds upon prior research that produced one of the largest tropical food web data sets to expand it conceptually, methodologically and geographically. It will build a globally important research facility (a canopy crane in PNG) and link researchers and infrastructure from several countries in a major effort to draw together separate lines of tropical and temperate research. Study sites in the ILTER, NEON, CTFS/SIGEO, and Canopy Crane Network will participate. The internationally recognized paraecologist program will be expanded, PhD students from both European and developing countries will be trained, and conservation of rainforests by indigenous rainforest dwellers will be leveraged.
Summary
The study will examine one of the most fundamental, yet poorly understood patterns of global biodiversity distribution: How can so many species coexist in a tropical forest? This key question of current ecology will be studied using quantitative surveys of plant-herbivore-parasitoid food webs within paired sets of tropical and temperate forests from six continents, in Papua New Guinea (PNG), Gabon, Panama, the Czech Republic, Japan, and USA, sampled using canopy cranes, truck-mounted elevated platforms and forest felling. This novel type of data will be analysed using a new rarefaction method, developed to test mechanistic explanations for biodiversity patterns along ecological gradients. It will evaluate competing hypotheses explaining latitudinal trends in insect herbivore diversity by the variation in either phylogenetic or functional diversity of plants, the host specificity of herbivores, or the diversity and specificity of their parasitoids and predators. The study will thus examine the importance of bottom-up (plants) and top-down (enemies) drivers of latitudinal trends in herbivore food webs, central to ecological theory that postulates the role of specialized herbivores as density-dependent agents of mortality involved in maintaining high tropical plant diversity. The project builds upon prior research that produced one of the largest tropical food web data sets to expand it conceptually, methodologically and geographically. It will build a globally important research facility (a canopy crane in PNG) and link researchers and infrastructure from several countries in a major effort to draw together separate lines of tropical and temperate research. Study sites in the ILTER, NEON, CTFS/SIGEO, and Canopy Crane Network will participate. The internationally recognized paraecologist program will be expanded, PhD students from both European and developing countries will be trained, and conservation of rainforests by indigenous rainforest dwellers will be leveraged.
Max ERC Funding
3 349 618 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym InPhoTime
Project Insect Photoperiodic Timer
Researcher (PI) David DOLEZEL
Host Institution (HI) Biologicke centrum AV CR, v. v. i.
Call Details Consolidator Grant (CoG), LS3, ERC-2016-COG
Summary Daylength measuring devices such as the photoperiodic timer enable animals to anticipate and thus survive adverse seasons. This ability has contributed to the great success of insects living in temperate regions. Yet the basis of photoperiodic sensing remains elusive, because of the lack of suitable genetic models expressing photoperiod-dependent seasonal phenotypes. We have developed the linden bug, Pyrrhocoris apterus, into a genetically tractable model with a robust, photoperiod-dependent reproductive arrest (diapause). With the available tools, this insect has become ideal for deciphering the regulation of seasonality. The project has 3 clear and ambitious objectives: 1). Our goal is to define the molecular and anatomical bases of the photoperiodic timer. To achieve this, we propose to identify photoperiodic timer genes, genes regulating input to the timer, and early output markers, through an RNA interference screen(s). To define the molecular mechanism of the timer, we will employ genome editing to precisely alter properties of the key players. 2). Next, we will combine techniques of neuronal backfilling, in-vivo fluorescent reporters, and microsurgery to define the photoperiodic timer anatomically and to examine its spatial relationship to the circadian clock in the insect brain. 3). We will exploit the great natural geographic variability of photoperiodic timing in P. apterus to explore its genetic basis. Genetic variants correlating with phenotypic differences will be causally tested by genome editing within the original genetic backgrounds. Both the established and the innovative strategies provide a complementary approach to the first molecular characterization of the seasonal photoperiodic timer in insects. The proposed research aspires to explain mechanisms underlying the critical physiological adaptation to changing seasons. Deciphering mechanisms underpinning widespread adaptation might bring general implications for environment-friendly pest control.
Summary
Daylength measuring devices such as the photoperiodic timer enable animals to anticipate and thus survive adverse seasons. This ability has contributed to the great success of insects living in temperate regions. Yet the basis of photoperiodic sensing remains elusive, because of the lack of suitable genetic models expressing photoperiod-dependent seasonal phenotypes. We have developed the linden bug, Pyrrhocoris apterus, into a genetically tractable model with a robust, photoperiod-dependent reproductive arrest (diapause). With the available tools, this insect has become ideal for deciphering the regulation of seasonality. The project has 3 clear and ambitious objectives: 1). Our goal is to define the molecular and anatomical bases of the photoperiodic timer. To achieve this, we propose to identify photoperiodic timer genes, genes regulating input to the timer, and early output markers, through an RNA interference screen(s). To define the molecular mechanism of the timer, we will employ genome editing to precisely alter properties of the key players. 2). Next, we will combine techniques of neuronal backfilling, in-vivo fluorescent reporters, and microsurgery to define the photoperiodic timer anatomically and to examine its spatial relationship to the circadian clock in the insect brain. 3). We will exploit the great natural geographic variability of photoperiodic timing in P. apterus to explore its genetic basis. Genetic variants correlating with phenotypic differences will be causally tested by genome editing within the original genetic backgrounds. Both the established and the innovative strategies provide a complementary approach to the first molecular characterization of the seasonal photoperiodic timer in insects. The proposed research aspires to explain mechanisms underlying the critical physiological adaptation to changing seasons. Deciphering mechanisms underpinning widespread adaptation might bring general implications for environment-friendly pest control.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym LaDIST
Project Large Discrete Structures
Researcher (PI) Daniel Kral
Host Institution (HI) Masarykova univerzita
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary The proposed project seeks to introduce novel methods to analyze and approximate large graphs and other discrete structures and to apply the developed methods to solve specific open problems. A need for such methods comes from computer science where the sizes of input structures are often enormous. Specifically, the project will advance the recently emerged theory of combinatorial limits by developing new insights in the structure of limit objects and by proposing a robust theory bridging the sparse and dense cases. The analytic methods from the theory of combinatorial limits will be used to analyze possible asymptotic behavior of large graphs and they will be applied in conjunction with structural arguments to provide solutions to specific problems in extremal combinatorics. The obtained insights will also be combined with methods from discrete optimization and logic to provide new algorithmic frameworks.
Summary
The proposed project seeks to introduce novel methods to analyze and approximate large graphs and other discrete structures and to apply the developed methods to solve specific open problems. A need for such methods comes from computer science where the sizes of input structures are often enormous. Specifically, the project will advance the recently emerged theory of combinatorial limits by developing new insights in the structure of limit objects and by proposing a robust theory bridging the sparse and dense cases. The analytic methods from the theory of combinatorial limits will be used to analyze possible asymptotic behavior of large graphs and they will be applied in conjunction with structural arguments to provide solutions to specific problems in extremal combinatorics. The obtained insights will also be combined with methods from discrete optimization and logic to provide new algorithmic frameworks.
Max ERC Funding
1 386 859 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym LONGWOOD
Project Long-term woodland dynamics in Central Europe: from estimations to a realistic model
Researcher (PI) Péter Szabó
Host Institution (HI) BOTANICKY USTAV AV CR, V.V.I.
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary The vegetation of Central Europe has been directly influenced by humans for at least eight millennia; the original forests have been gradually transformed into today’s agricultural landscape. However, there is more to this landscape change than the simple disappearance of woodland. Forests have been brought under various management regimes, which profoundly altered their structure and species composition. The details of this process are little known for two main reasons. The greatest obstacle is the lack of cooperation among the disciplines dealing with the subject. The second major problem is the differences in spatio-temporal scaling and resolution used by the individual disciplines. Existing studies either concern smaller territories, or cover large areas (continental to global) with the help of modelling-based generalizations rather than primary data from the past. Using an extensive range of primary sources from history, historical geography, palaeoecology, archaeology and ecology, this interdisciplinary project aims to reconstruct the long-term (Neolithic to present) patterns of woodland cover, structure, composition and management in a larger study region (Moravia, the Czech Republic, ca. 27,000 km2) with the highest spatio-temporal resolution possible. Causes for the patterns observed will be analyzed in terms of qualitative and quantitative factors, both natural and human-driven, and the patterns in the tree layer will be related to those in the herb layer, which constitutes the most important part of plant biodiversity in Europe. This project will introduce woodland management as an equal driving force into long-term woodland dynamics, thus fostering a paradigm shift in ecology towards construing humans as an internal, constitutive element of ecosystems. By integrating sources and methods from the natural sciences and the humanities, the project will provide a more reliable basis for woodland management and conservation in Central Europe.
Summary
The vegetation of Central Europe has been directly influenced by humans for at least eight millennia; the original forests have been gradually transformed into today’s agricultural landscape. However, there is more to this landscape change than the simple disappearance of woodland. Forests have been brought under various management regimes, which profoundly altered their structure and species composition. The details of this process are little known for two main reasons. The greatest obstacle is the lack of cooperation among the disciplines dealing with the subject. The second major problem is the differences in spatio-temporal scaling and resolution used by the individual disciplines. Existing studies either concern smaller territories, or cover large areas (continental to global) with the help of modelling-based generalizations rather than primary data from the past. Using an extensive range of primary sources from history, historical geography, palaeoecology, archaeology and ecology, this interdisciplinary project aims to reconstruct the long-term (Neolithic to present) patterns of woodland cover, structure, composition and management in a larger study region (Moravia, the Czech Republic, ca. 27,000 km2) with the highest spatio-temporal resolution possible. Causes for the patterns observed will be analyzed in terms of qualitative and quantitative factors, both natural and human-driven, and the patterns in the tree layer will be related to those in the herb layer, which constitutes the most important part of plant biodiversity in Europe. This project will introduce woodland management as an equal driving force into long-term woodland dynamics, thus fostering a paradigm shift in ecology towards construing humans as an internal, constitutive element of ecosystems. By integrating sources and methods from the natural sciences and the humanities, the project will provide a more reliable basis for woodland management and conservation in Central Europe.
Max ERC Funding
1 413 474 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym THz-FRaScan-ESR
Project THz Frequency Rapid Scan – Electron Spin Resonance spectroscopy for spin dynamics investigations of bulk and surface materials (THz-FRaScan-ESR)
Researcher (PI) Petr NEUGEBAUER
Host Institution (HI) VYSOKE UCENI TECHNICKE V BRNE
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Current high frequency electron spin resonance (HFESR) instruments suffer from the disadvantages of being limited to a single frequency and to tiny sample volumes. The study of spin dynamics at frequencies beyond a few hundred gigahertz is currently prohibitively difficult. These limitations are now preventing progress in dynamic nuclear polarization (DNP) and preclude the implementation of zero-field quantum computing. In order to revolutionize sensitivity in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) by means of DNP techniques allowing to watch in real time molecular interactions or even to monitor how sophisticated systems (ribosomes) work, the HFESR methods have to be substantially improved. I will develop a novel and worldwide unique technique called broadband terahertz frequency rapid scan (FRaScan) ESR. I intend to implement this method into a working prototype, which will seamlessly span the entire frequency range from 100 GHz to 1 THz, and allow spin dynamics investigation of large samples. This revolutionary new concept based on rapid frequency sweeps will remove all the restrictions and limitations of conventional HFESR methods used nowadays. It will enable for the first time multi-frequency studies of quantum coherence also in zero magnetic field. It will lead to substantial increases in sensitivity and concurrent decrease of measurement time, thus allowing more efficient use of resources. Finally, the method will allow identification of novel DNP signal enhancement agents, ultimately leading to a step change improvement of the MRI method. It will drastically shorten MRI scan times in hospitals, greatly enhancing patient comfort together with significantly better and precise diagnoses. The method will lead to zero field quantum computers with computation power which will be never reached with conventional technology. In summary it will lead to impacts far beyond the scientific community.
Summary
Current high frequency electron spin resonance (HFESR) instruments suffer from the disadvantages of being limited to a single frequency and to tiny sample volumes. The study of spin dynamics at frequencies beyond a few hundred gigahertz is currently prohibitively difficult. These limitations are now preventing progress in dynamic nuclear polarization (DNP) and preclude the implementation of zero-field quantum computing. In order to revolutionize sensitivity in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) by means of DNP techniques allowing to watch in real time molecular interactions or even to monitor how sophisticated systems (ribosomes) work, the HFESR methods have to be substantially improved. I will develop a novel and worldwide unique technique called broadband terahertz frequency rapid scan (FRaScan) ESR. I intend to implement this method into a working prototype, which will seamlessly span the entire frequency range from 100 GHz to 1 THz, and allow spin dynamics investigation of large samples. This revolutionary new concept based on rapid frequency sweeps will remove all the restrictions and limitations of conventional HFESR methods used nowadays. It will enable for the first time multi-frequency studies of quantum coherence also in zero magnetic field. It will lead to substantial increases in sensitivity and concurrent decrease of measurement time, thus allowing more efficient use of resources. Finally, the method will allow identification of novel DNP signal enhancement agents, ultimately leading to a step change improvement of the MRI method. It will drastically shorten MRI scan times in hospitals, greatly enhancing patient comfort together with significantly better and precise diagnoses. The method will lead to zero field quantum computers with computation power which will be never reached with conventional technology. In summary it will lead to impacts far beyond the scientific community.
Max ERC Funding
1 999 874 €
Duration
Start date: 2018-01-01, End date: 2022-12-31