Project acronym 3CBIOTECH
Project Cold Carbon Catabolism of Microbial Communities underprinning a Sustainable Bioenergy and Biorefinery Economy
Researcher (PI) Gavin James Collins
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Summary
The applicant will collaborate with Irish, European and U.S.-based colleagues to develop a sustainable biorefinery and bioenergy industry in Ireland and Europe. The focus of this ERC Starting Grant will be the application of classical microbiological, physiological and real-time polymerase chain reaction (PCR)-based assays, to qualitatively and quantitatively characterize microbial communities underpinning novel and innovative, low-temperature, anaerobic waste (and other biomass) conversion technologies, including municipal wastewater treatment and, demonstration- and full-scale biorefinery applications.
Anaerobic digestion (AD) is a naturally-occurring process, which is widely applied for the conversion of waste to methane-containing biogas. Low-temperature (<20 degrees C) AD has been applied by the applicant as a cost-effective alternative to mesophilic (c. 35C) AD for the treatment of several waste categories. However, the microbiology of low-temperature AD is poorly understood. The applicant will work with microbial consortia isolated from anaerobic bioreactors, which have been operated for long-term experiments (>3.5 years), and include organic acid-oxidizing, hydrogen-producing syntrophic microbes and hydrogen-consuming methanogens. A major focus of the project will be the ecophysiology of psychrotolerant and psychrophilic methanogens already identified and cultivated by the applicant. The project will also investigate the role(s) of poorly-understood Crenarchaeota populations and homoacetogenic bacteria, in complex consortia. The host organization is a leading player in the microbiology of waste-to-energy applications. The applicant will train a team of scientists in all aspects of the microbiology and bioengineering of biomass conversion systems.
Max ERC Funding
1 499 797 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym A-DIET
Project Metabolomics based biomarkers of dietary intake- new tools for nutrition research
Researcher (PI) Lorraine Brennan
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Summary
In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Max ERC Funding
1 995 548 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym AGELESS
Project Comparative genomics / ‘wildlife’ transcriptomics uncovers the mechanisms of halted ageing in mammals
Researcher (PI) Emma Teeling
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary "Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Summary
"Ageing is the gradual and irreversible breakdown of living systems associated with the advancement of time, which leads to an increase in vulnerability and eventual mortality. Despite recent advances in ageing research, the intrinsic complexity of the ageing process has prevented a full understanding of this process, therefore, ageing remains a grand challenge in contemporary biology. In AGELESS, we will tackle this challenge by uncovering the molecular mechanisms of halted ageing in a unique model system, the bats. Bats are the longest-lived mammals relative to their body size, and defy the ‘rate-of-living’ theories as they use twice as much the energy as other species of considerable size, but live far longer. This suggests that bats have some underlying mechanisms that may explain their exceptional longevity. In AGELESS, we will identify the molecular mechanisms that enable mammals to achieve extraordinary longevity, using state-of-the-art comparative genomic methodologies focused on bats. We will identify, using population transcriptomics and telomere/mtDNA genomics, the molecular changes that occur in an ageing wild population of bats to uncover how bats ‘age’ so slowly compared with other mammals. In silico whole genome analyses, field based ageing transcriptomic data, mtDNA and telomeric studies will be integrated and analysed using a networks approach, to ascertain how these systems interact to halt ageing. For the first time, we will be able to utilize the diversity seen within nature to identify key molecular targets and regions that regulate and control ageing in mammals. AGELESS will provide a deeper understanding of the causal mechanisms of ageing, potentially uncovering the crucial molecular pathways that can be modified to halt, alleviate and perhaps even reverse this process in man."
Max ERC Funding
1 499 768 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ALH
Project Alternative life histories: linking genes to phenotypes to demography
Researcher (PI) Thomas Eric Reed
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Summary
Understanding how and why individuals develop strikingly different life histories is a major goal in evolutionary biology. It is also a prerequisite for conserving important biodiversity within species and predicting the impacts of environmental change on populations. The aim of my study is to examine a key threshold phenotypic trait (alternative migratory tactics) in a series of large scale laboratory and field experiments, integrating several previously independent perspectives from evolutionary ecology, ecophysiology and genomics, to produce a downstream predictive model. My chosen study species, the brown trout Salmo trutta, has an extensive history of genetic and experimental work and exhibits ‘partial migration’: individuals either migrate to sea (‘sea trout’) or remain in freshwater their whole lives. Recent advances in molecular parentage assignment, quantitative genetics and genomics (next generation sequencing and bioinformatics) will allow unprecedented insight into how alternative life history phenotypes are moulded by the interaction between genes and environment. To provide additional mechanistic understanding of these processes, the balance between metabolic requirements during growth and available extrinsic resources will be investigated as the major physiological driver of migratory behaviour. Together these results will be used to develop a predictive model to explore the consequences of rapid environmental change, accounting for the effects of genetics and environment on phenotype and on population demographics. In addition to their value for conservation and management of an iconic and key species in European freshwaters and coastal seas, these results will generate novel insight into the evolution of migratory behaviour generally, providing a text book example of how alternative life histories are shaped and maintained in wild populations.
Max ERC Funding
1 499 202 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ANICOLEVO
Project Animal coloration through deep time: evolutionary novelty, homology and taphonomy
Researcher (PI) Maria McNamara
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Call Details Starting Grant (StG), LS8, ERC-2014-STG
Summary What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Summary
What does the fossil record tell us about the evolution of colour in animals through deep time? Evidence of colour in fossils can inform on the visual signalling strategies used by ancient animals. Research to date often has a narrow focus, lacks a broad phylogenetic and temporal context, and rarely incorporates information on taphonomy. This proposal represents a bold new holistic approach to the study of fossil colour: it will couple powerful imaging- and chemical analytical techniques with a rigorous programme of fossilisation experiments simulating decay, burial, and transport, and analysis of fossils and their sedimentary context, to construct the first robust models for the evolution of colour in animals through deep time. The research will resolve the original integumentary colours of fossil higher vertebrates, and the original colours of fossil hair; the fossil record of non-melanin pigments in feathers and insects; the biological significance of monotonal patterning in fossil insects; and the evolutionary history of scales and 3D photonic crystals in insects. Critically, the research will test, for the first time, whether evidence of fossil colour can solve broader evolutionary questions, e.g. the true affinities of enigmatic Cambrian chordate-like metazoans, and feather-like integumentary filaments in dinosaurs. The proposal entails construction of a dedicated experimental maturation laboratory for simulating the impact of burial on tissues. This laboratory will form the core of the world’s first integrated ‘experimental fossilisation facility’, consolidating the PI’s team as the global hub for fossil colour research. The research team comprises the PI, three postdoctoral researchers, and three PhD students, and will form an extensive research network via collaborations with 13 researchers from Europe and beyond. The project will reach out to diverse scientists and will inspire a positive attitude to science among the general public and policymakers alike.
Max ERC Funding
1 562 000 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ARCHAIC ADAPT
Project Admixture accelerated adaptation: signals from modern, ancient and archaic DNA.
Researcher (PI) Emilia HUERTA-SANCHEZ
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Summary
With the advent of new sequencing technologies, population geneticists now have access to more data than ever before. We have access to thousands of human genomes from a diverse set of populations around the globe, and, thanks to advances in DNA extraction and library preparation, we now are beginning to have access to ancient DNA sequence data. These data have greatly improved our knowledge of human history, human adaptation to different environments and human disease. Genome-wide studies have highlighted many genes or genomic loci that may play a role in adaptive or disease related phenotypes of biological importance.
With these collections of modern and ancient sequence data we want to answer a key evolutionary question: how do human adaptations arise? We strongly believe that the state-of-the-art methodologies for uncovering signatures of adaptation are blind to potential modes of adaptation because they are lacking two critical components – more complete integration of multiple population haplotype data (including archaic, ancient and modern samples), and an account of population interactions that facilitate adaptation.
Therefore I plan to develop new methods to detect shared selective events across populations by creating novel statistical summaries, and to detect admixture-facilitated adaptation which we believe is likely a common mode of natural selection. We will apply these tools to new datasets to characterize the interplay of natural selection, archaic and modern admixture in populations in the Americas and make a comparative analysis of modern and ancient European samples to understand the origin and changing profile of adaptive archaic alleles. As a result our work will reveal evolutionary processes that have played an important role in human evolution and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym BIOELECPRO
Project Frontier Research on the Dielectric Properties of Biological Tissue
Researcher (PI) Martin James O'Halloran
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2014-STG
Summary The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Summary
The dielectric properties of biological tissues are of fundamental importance to the understanding of the interaction of electromagnetic fields with the human body. These properties are used to determine the safety of electronic devices, and in the design, development and refinement of electromagnetic medical imaging and therapeutic devices. Many historical studies have aimed to establish the dielectric properties of a broad range of tissues. A growing number of recent studies have sought to more accurately estimate these dielectric properties by standardising measurement procedures, and in some cases, measuring the dielectric properties in-vivo. However, these studies have often produced results in direct conflict with historical studies, casting doubt on the accuracy of the currently utilised dielectric properties. At best, this uncertainty could significantly delay the development of electromagnetic imaging or therapeutic medical devices. At worst, the health dangers of electromagnetic radiation could be under-estimated. The applicant will embark upon frontier research to develop improved methods and standards for the measurement of the dielectric properties of biological tissue. The research programme will accelerate the design and development of electromagnetic imaging and therapeutic devices, at a time when the technology is gaining significant momentum. The primary objective of the research is to develop a deep understanding of the fundamental factors which contribute to errors in dielectric property measurement. These factors will include in-vivo/ex-vivo measurements and dielectric measurement method used, amongst many others. Secondly, a new open-access repository of dielectric measurements will be created based on a greatly enhanced understanding of the mechanisms underlying dielectric property measurement. Finally, new electromagnetic-based imaging and therapeutic medical devices will be investigated, based on the solid foundation of dielectric data.
Max ERC Funding
1 499 329 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym BIOUNCERTAINTY
Project Deep uncertainties in bioethics: genetic research, preventive medicine, reproductive decisions
Researcher (PI) Tomasz ZURADZKI
Host Institution (HI) UNIWERSYTET JAGIELLONSKI
Call Details Starting Grant (StG), SH5, ERC-2018-STG
Summary Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Summary
Uncertainty is everywhere, as the saying goes, but rarely considered in ethical reflections. This project aims to reinterpret ethical discussions on current advances in biomedicine: instead of understanding bioethical positions as extensions of classical normative views in ethics (consequentialism, deontologism, contractualism etc.), my project interprets them more accurately as involving various normative approaches to decision making under uncertainty. The following hard cases in bioethics provide the motivation for research:
1) Regulating scientific research under uncertainty about the ontological/moral status (e.g. parthenogenetic stem cells derived from human parthenotes) in the context of meta-reasoning under normative uncertainty.
2) The value of preventive medicine in healthcare (e.g. vaccinations) in the context of decision-making under metaphysical indeterminacy.
3) Population or reproductive decisions (e.g. preimplantation genetic diagnosis) in the context of valuing mere existence.
The main drive behind this project is the rapid progress in biomedical research combined with new kinds of uncertainties. These new and “deep” uncertainties trigger specific forms of emotions and cognitions that influence normative judgments and decisions. The main research questions that will be addressed by conceptual analysis, new psychological experiments, and case studies are the following: how do the heuristics and biases (H&B) documented by behavioral scientists influence the formation of normative judgments in bioethical contexts; how to demarcate between distorted and undistorted value judgments; to what extent is it permissible for individuals or policy makers to yield to H&B. The hypothesis is that many existing bioethical rules, regulations, practices seem to have emerged from unreliable reactions, rather than by means of deliberation on the possible justifications for alternative ways to decide about them under several layers and types of uncertainty.
Max ERC Funding
1 499 625 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym BugTheDrug
Project Predicting the effects of gut microbiota and diet on an individual’s drug response and safety
Researcher (PI) Ines THIELE
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Call Details Starting Grant (StG), LS7, ERC-2017-STG
Summary Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Summary
Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the harm of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. Consequently, novel approaches are required that explicitly account for individual variations in response to environmental influences, in addition to genetic variation. The human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. In this study, I will combine whole-body, genome-scale molecular resolution modeling of human metabolism and human gut microbial metabolism, which represents a network of genes, proteins, and biochemical reactions, with physiological, clinically relevant modeling of drug responses. I will perform two pilot studies on human subjects to illustrate that this innovative, versatile computational modeling framework can be used to stratify patients prior to drug prescription and to optimize drug bioavailability through personalized dietary intervention. With these studies, BugTheDrug will advance mechanistic understanding of drug-microbiota-diet interactions and their contribution to individual drug responses. I will perform the first integration of cutting-edge approaches and novel insights from four distinct research areas: systems biology, quantitative systems pharmacology, microbiology, and nutrition. BugTheDrug conceptually and technologically addresses the demand for novel approaches to the study of individual variability, thereby providing breakthrough support for progress in precision medicine.
Max ERC Funding
1 687 458 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym CHROMARRANGE
Project Programmed and unprogrammed genomic rearrangements during the evolution of yeast species
Researcher (PI) Kenneth Henry Wolfe
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Advanced Grant (AdG), LS2, ERC-2010-AdG_20100317
Summary By detailed evolutionary comparisons among multiple sequenced yeast genomes, we have identified several unusual regions where our preliminary evidence suggests that previously unknown molecular biology phenomena, involving rearrangement of genomic DNA, are occurring. I now propose to use a combination of dry-lab and wet-lab experimental approaches to characterize these regions and phenomena further. One region is a 24-kb section of chromosome XIV that appears to undergo recurrent 'flip/flop' inversion between two isomers at a fairly high rate in five species as diverse as Saccharomyces cerevisiae and Naumovia castellii, leading to a 1:1 ratio of the two isomers in each species. We hypothesize that this region is the site of a programmed DNA rearrangement analogous to mating-type switching. We have also identified two new genes related to the mating-type switching endonuclease HO, but different from it, that are potentially involved in rearrangement processes though not necessarily the inversion described above. We will determine the sites of action of these endonucleases. Separately, we have found evidence for a process of recurrent deletion of DNA from regions flanking the mating-type (MAT) locus in all yeast species that are descended from the whole-genome duplication (WGD) event, causing continual transpositions of genes from beside MAT to other locations in the genome. In related computational work, we propose to investigate an hypothesis that evolutionary loss of the MATa2 transcriptional activator may have been the cause of the WGD event.
Summary
By detailed evolutionary comparisons among multiple sequenced yeast genomes, we have identified several unusual regions where our preliminary evidence suggests that previously unknown molecular biology phenomena, involving rearrangement of genomic DNA, are occurring. I now propose to use a combination of dry-lab and wet-lab experimental approaches to characterize these regions and phenomena further. One region is a 24-kb section of chromosome XIV that appears to undergo recurrent 'flip/flop' inversion between two isomers at a fairly high rate in five species as diverse as Saccharomyces cerevisiae and Naumovia castellii, leading to a 1:1 ratio of the two isomers in each species. We hypothesize that this region is the site of a programmed DNA rearrangement analogous to mating-type switching. We have also identified two new genes related to the mating-type switching endonuclease HO, but different from it, that are potentially involved in rearrangement processes though not necessarily the inversion described above. We will determine the sites of action of these endonucleases. Separately, we have found evidence for a process of recurrent deletion of DNA from regions flanking the mating-type (MAT) locus in all yeast species that are descended from the whole-genome duplication (WGD) event, causing continual transpositions of genes from beside MAT to other locations in the genome. In related computational work, we propose to investigate an hypothesis that evolutionary loss of the MATa2 transcriptional activator may have been the cause of the WGD event.
Max ERC Funding
1 516 960 €
Duration
Start date: 2011-06-01, End date: 2016-05-31