Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 2DIR SPECTROMETER
Project A step-change in sensitivity for two dimensional laser infrared spectroscopy
Researcher (PI) Jasper VAN THOR
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary "Here, we propose a novel design for a significantly improved detector for the emerging field of coherent two-dimension infrared (2DIR) spectroscopy, which is an optical analog of Nuclear Magnetic Resonance spectroscopy (NMR). 2DIR is a cutting edge technique which is rapidly growing and has applications in subjects as diverse as energy sciences, biophysics, biomedical research and physical chemistry. Currently, the single most important technical problem that is generally agreed to limit applications of the methodology is the sensitivity with which the signals are measured. Having worked on multiple stabilisation techniques during the ERC funded research it was realised that a straightforward design alteration of the infrared detector will improve the sensitivity very significantly, theoretically by more than one order of magnitude. Here, the technical principles are explained, and a plan for commercialising the instrument in collaboration with the current market leader - Infrared System Development Corp. (ISDC) -. We apply for funding to develop the prototype."
Summary
"Here, we propose a novel design for a significantly improved detector for the emerging field of coherent two-dimension infrared (2DIR) spectroscopy, which is an optical analog of Nuclear Magnetic Resonance spectroscopy (NMR). 2DIR is a cutting edge technique which is rapidly growing and has applications in subjects as diverse as energy sciences, biophysics, biomedical research and physical chemistry. Currently, the single most important technical problem that is generally agreed to limit applications of the methodology is the sensitivity with which the signals are measured. Having worked on multiple stabilisation techniques during the ERC funded research it was realised that a straightforward design alteration of the infrared detector will improve the sensitivity very significantly, theoretically by more than one order of magnitude. Here, the technical principles are explained, and a plan for commercialising the instrument in collaboration with the current market leader - Infrared System Development Corp. (ISDC) -. We apply for funding to develop the prototype."
Max ERC Funding
149 999 €
Duration
Start date: 2013-11-01, End date: 2014-10-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 4PI-SKY
Project 4 pi sky: Extreme Astrophysics with Revolutionary Radio Telescopes
Researcher (PI) Robert Philip Fender
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Summary
Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Max ERC Funding
2 999 847 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym AB-SWITCH
Project Evaluation of commercial potential of a low-cost kit based on DNA-nanoswitches for the single-step measurement of diagnostic antibodies
Researcher (PI) Francesco RICCI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary "Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Summary
"Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Max ERC Funding
150 000 €
Duration
Start date: 2017-02-01, End date: 2018-07-31
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31