Project acronym AMAIZE
Project Atlas of leaf growth regulatory networks in MAIZE
Researcher (PI) Dirk, Gustaaf Inzé
Host Institution (HI) VIB
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Summary
"Understanding how organisms regulate size is one of the most fascinating open questions in biology. The aim of the AMAIZE project is to unravel how growth of maize leaves is controlled. Maize leaf development offers great opportunities to study the dynamics of growth regulatory networks, essentially because leaf development is a linear system with cell division at the leaf basis followed by cell expansion and maturation. Furthermore, the growth zone is relatively large allowing easy access of tissues at different positions. Four different perturbations of maize leaf size will be analyzed with cellular resolution: wild-type and plants having larger leaves (as a consequence of GA20OX1 overexpression), both grown under either well-watered or mild drought conditions. Firstly, a 3D cellular map of the growth zone of the fourth leaf will be made. RNA-SEQ of three different tissues (adaxial- and abaxial epidermis; mesophyll) obtained by laser dissection with an interval of 2.5 mm along the growth zone will allow for the analysis of the transcriptome with high resolution. Additionally, the composition of fifty selected growth regulatory protein complexes and DNA targets of transcription factors will be determined with an interval of 5 mm along the growth zone. Computational methods will be used to construct comprehensive integrative maps of the cellular and molecular processes occurring along the growth zone. Finally, selected regulatory nodes of the growth regulatory networks will be further functionally analyzed using a transactivation system in maize.
AMAIZE opens up new perspectives for the identification of optimal growth regulatory networks that can be selected for by advanced breeding or for which more robust variants (e.g. reduced susceptibility to drought) can be obtained through genetic engineering. The ability to improve the growth of maize and in analogy other cereals could have a high impact in providing food security"
Max ERC Funding
2 418 429 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BEAT
Project The functional interaction of EGFR and beta-catenin signalling in colorectal cancer: Genetics, mechanisms, and therapeutic potential.
Researcher (PI) Andrea BERTOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Summary
Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Max ERC Funding
1 793 421 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym Cholstim
Project Cholinergic modulation of immune homeostasis: new opportunities for treatment
Researcher (PI) Guy Eduard Elisabeth Boeckxstaens
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Summary
In the gastrointestinal tract, the balance between activation of the mucosal immune system and tolerance should be tightly regulated to maintain immune homeostasis to prevent chronic inflammation and tissue damage. Recently, the new concept was introduced that the vagus nerve plays an important role in modulating immune homeostasis as part of a so-called inflammatory reflex. We provided evidence for this concept in the gastrointestinal tract and showed that vagus nerve stimulation (VNS) reduced inflammation of the intestinal muscle layer. Moreover, we showed that this effect was mediated by activation of enteric cholinergic neurons (cholinergic tone) interacting with intestinal macrophages in the muscle layer. Of interest, we have collected exciting data that the vagus nerve (and thus the cholinergic tone) also significantly contributes to mucosal immune homeostasis. Mice that underwent vagotomy lost their ability to develop tolerance to oral feeding of an antigen, whereas VNS reduced mucosal inflammation in a model of food allergy. Based on these data, we hypothesize that the cholinergic tone is a major determinant of the tolerogenic microenvironment of the mucosal immune system, and want to further explore the immune-modulatory effect of the vagal innervation and enteric neurons on the macrophages residing in the lamina propria. In addition, we will further explore the therapeutic potential and the mechanisms involved of chronic VNS in colitis and food allergy. Finally, we will translate our preclinical findings to the human situation. The anti-inflammatory effect of VNS (applied during surgery) will be studied in human intestinal tissue whereas the therapeutic potential of chronic VNS in Crohn’s disease will be studied in a pilot trial.
The outcome of this project will be ground-breaking and will have an immense impact on clinical management as it will provide new therapeutic opportunities for the treatment of immune-mediated gastrointestinal disorders.
Max ERC Funding
2 495 200 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym CONNECT
Project Connexin and pannexin channels as drug targets and biomarkers in acute and chronic liver disease
Researcher (PI) Mathieu Frederick Alexander Vinken
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), LS7, ERC-2013-StG
Summary The CONNECT project intends to contribute to the substantiation of the controversial scientific concept stating that hemichannels consisting of connexin32 and connexin43 as well as pannexin1 channels act as pathological pores. This hypothesis will be verified in the specific context of cell death and inflammation, both which are key features of acute liver failure and liver fibrosis. As such, the project is organised in 3 workpackages. In the first workpackage, connexin32, connexin43 and pannexin1 expression and activity will be studied in human and animal diseased liver tissue. The second workpackage is targeted towards the in vitro characterisation of recently generated inhibitors of hemichannels consisting of connexin32 and connexin43 as well as pannexin1 channels, namely Gap24, Gap19 and 10Panx1, respectively. Particular attention will be paid to their target selectivity and potential to reduce cell death and inflammation in liver-based in vitro models. The goal of the third workpackage is to test the in vivo extrapolation of the established in vitro findings. To this end, Gap24, Gap19 and 10Panx1 will be administered to animal models of acute liver failure or liver fibrosis, followed by evaluation of their outcome on cell death, inflammation and clinically relevant read-outs. The CONNECT project is anticipated to significantly impact the connexin and pannexin research area, as it foresees the development and optimisation of new tools and technology to study connexin hemichannels and pannexin channels. The clinical utility of this high risk/high gain project is dual, as it aspires the establishment of novel drug targets and tissue biomarkers for, respectively, the treatment and diagnosis of liver disease. However, given the generic nature of the driving concept, the outcome of the CONNECT project is equally of clinical relevance for a plethora of other pathologies.
Summary
The CONNECT project intends to contribute to the substantiation of the controversial scientific concept stating that hemichannels consisting of connexin32 and connexin43 as well as pannexin1 channels act as pathological pores. This hypothesis will be verified in the specific context of cell death and inflammation, both which are key features of acute liver failure and liver fibrosis. As such, the project is organised in 3 workpackages. In the first workpackage, connexin32, connexin43 and pannexin1 expression and activity will be studied in human and animal diseased liver tissue. The second workpackage is targeted towards the in vitro characterisation of recently generated inhibitors of hemichannels consisting of connexin32 and connexin43 as well as pannexin1 channels, namely Gap24, Gap19 and 10Panx1, respectively. Particular attention will be paid to their target selectivity and potential to reduce cell death and inflammation in liver-based in vitro models. The goal of the third workpackage is to test the in vivo extrapolation of the established in vitro findings. To this end, Gap24, Gap19 and 10Panx1 will be administered to animal models of acute liver failure or liver fibrosis, followed by evaluation of their outcome on cell death, inflammation and clinically relevant read-outs. The CONNECT project is anticipated to significantly impact the connexin and pannexin research area, as it foresees the development and optimisation of new tools and technology to study connexin hemichannels and pannexin channels. The clinical utility of this high risk/high gain project is dual, as it aspires the establishment of novel drug targets and tissue biomarkers for, respectively, the treatment and diagnosis of liver disease. However, given the generic nature of the driving concept, the outcome of the CONNECT project is equally of clinical relevance for a plethora of other pathologies.
Max ERC Funding
1 473 929 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ContraNPM1AML
Project Dissecting to hit the therapeutic targets in nucleophosmin (NPM1)-mutated acute myeloid leukemia
Researcher (PI) Maria Paola MARTELLI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Summary
Acute myeloid leukemia (AML) is a group of hematologic malignancies which, due to their molecular and clinical heterogeneity, have been traditionally difficult to classify and treat. Recently, next-generation, whole-genome sequencing has uncovered several recurrent somatic mutations that better define the landscape of AML genomics. Despite these advances in deciphering AML molecular subsets, there have been no concurrent improvements in AML therapy which still relies on the ‘antracycline+cytarabine’ scheme. Hereto, only about 40-50% of adult young patients are cured whilst most of the elderly succumb to their disease. Therefore, new therapeutic approaches which would take advantage of the new discoveries are clearly needed. In the past years, we discovered and characterized nucleophosmin (NPM1) mutations as the most frequent genetic alteration (about 30%) in AML, and today NPM1-mutated AML is a new entity in the WHO classification of myeloid neoplasms. However, mechanisms of leukemogenesis and a specific therapy for this leukemia are missing. Here, I aim to unravel the complex network of molecular interactions that take place in this distinct genetic subtype, and find their vulnerabilities to identify new targets for therapy. To address this issue, I will avail of relevant pre-clinical models developed in our laboratories and propose two complementary strategies: 1) a screening-based approach, focused either on the target, by analyzing synthetic lethal interactions through CRISPR-based genome-wide interference, or on the drug, by high-throughput chemical libraries screenings; 2) a hypothesis-driven approach, based on our recent gained novel insights on the role of specific intracellular pathways/genes in NPM1-mutated AML and on pharmacological studies with ‘old’ drugs, which we have revisited in the specific AML genetic context. I expect our discoveries will lead to find novel therapeutic approaches and make clinical trials available to patients as soon as possible.
Max ERC Funding
1 883 750 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym DIDO
Project Innovative drugs targeting IDO molecular dynamics in autoimmunity and neoplasia
Researcher (PI) Ursula Grohmann
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Advanced Grant (AdG), LS7, ERC-2013-ADG
Summary "Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Summary
"Catabolism of amino acids is an ancient survival strategy that also controls immune responses in mammals. Indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions, including autoimmune diseases, in which it is often defective, and neoplasia, in which it promotes immune unresponsiveness. The PI’s group recently revealed that IDO does not merely degrade tryptophan and produce immunoregulatory kynurenines but also acts as a signal-transducing molecule independently of its enzyme activity. IDO’s signaling function relies on the presence of phosphorylable motifs in a region (small IDO domain) distant from the catalytic site (large IDO domain). Preliminary data indicate that IDO, depending on microenvironmental conditions, can move among distinct cellular compartments. Thus IDO may be considered a ‘moonligthing’ protein, i.e., an ancestral metabolic molecule that, during evolution, has acquired the DYNAMIC feature of moving intracellularly and switching among distinct functions by changing its conformational state. By means of computational studies, Macchiarulo’s group (team member) has identified distinct conformations of IDO, some of which are associated with optimal catalytic activity of the enzyme whereas others may favor tyrosine phosphorylation of IDO’s small domain. A switch between distinct conformations can be induced by the use of ligands that bind either the catalytic site or an accessory pocket outside the IDO catalytic site. The first aim of DIDO is to decipher the relationships between IDO conformations and multiple functions of the enzyme. A second aim is to identify small molecules with drug-like properties capable of modulating distinct IDO’s molecular conformations in order to either potentiate (a new therapeutic approach in autoimmune diseases) or inhibit (more efficient anti-tumor therapeutic strategy) immunoregulatory signaling ability of IDO."
Max ERC Funding
2 442 078 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DISEASEAVATARS
Project Modeling Disease through Cell Reprogramming: a Translational Approach to the Pathogenesis of Syndromes Caused by Symmetrical Gene Dosage Imbalances
Researcher (PI) Giuseppe Testa
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary The fundamental limitation in our ability to dissect human diseases is the scarce availability of human tissues at relevant disease stages, which is particularly salient for neural disorders. Somatic cell reprogramming is overcoming this limitation through the derivation of patient-specific induced pluripotent stem cells (iPSC) that can be differentiated into disease-relevant cell-types. Despite these tantalizing possibilities, there are critical issues to be addressed in order to secure iPSC-modeling as a robust platform for the interrogation of disease aetiology and the development of new therapies. These concern the taming of human genetic variation, the identification of differentiation stages in which to uncover and validate phenotypes, and finally their translational into drug discovery assays. This project confronts these challenges focusing on the paradigmatic case of two rare but uniquely informative disorders caused by symmetric gene dosage imbalances at 7q11.23: Williams Beuren Syndrome and the subset of autism spectrum disorders associated to 7q11.23 microduplication. The hallmark of WBS is a unique behavioral-cognitive profile characterized by hypersociability and intellectual disability in the face of comparatively well-preserved language abilities. Hence, the striking symmetry in genotype and phenotype between WBS and 7dupASD points to the 7q11.23 cluster as a surprisingly small subset of dosage-sensitive genes affecting social behaviour and cognition. We build on a large panel of iPSC lines that we already reprogrammed from a unique cohort of WBS and 7dupASD patients and whose characterization points to specific derangements at the level of transcriptional/epigenetic control, protein synthesis and synaptic dysfunction. Through the integration of transcriptomic and epigenomic profiling with targeted mass spectrometry and gene network prediction we propose an innovative drug discovery pipeline for the identification of new therapeutic leads.
Summary
The fundamental limitation in our ability to dissect human diseases is the scarce availability of human tissues at relevant disease stages, which is particularly salient for neural disorders. Somatic cell reprogramming is overcoming this limitation through the derivation of patient-specific induced pluripotent stem cells (iPSC) that can be differentiated into disease-relevant cell-types. Despite these tantalizing possibilities, there are critical issues to be addressed in order to secure iPSC-modeling as a robust platform for the interrogation of disease aetiology and the development of new therapies. These concern the taming of human genetic variation, the identification of differentiation stages in which to uncover and validate phenotypes, and finally their translational into drug discovery assays. This project confronts these challenges focusing on the paradigmatic case of two rare but uniquely informative disorders caused by symmetric gene dosage imbalances at 7q11.23: Williams Beuren Syndrome and the subset of autism spectrum disorders associated to 7q11.23 microduplication. The hallmark of WBS is a unique behavioral-cognitive profile characterized by hypersociability and intellectual disability in the face of comparatively well-preserved language abilities. Hence, the striking symmetry in genotype and phenotype between WBS and 7dupASD points to the 7q11.23 cluster as a surprisingly small subset of dosage-sensitive genes affecting social behaviour and cognition. We build on a large panel of iPSC lines that we already reprogrammed from a unique cohort of WBS and 7dupASD patients and whose characterization points to specific derangements at the level of transcriptional/epigenetic control, protein synthesis and synaptic dysfunction. Through the integration of transcriptomic and epigenomic profiling with targeted mass spectrometry and gene network prediction we propose an innovative drug discovery pipeline for the identification of new therapeutic leads.
Max ERC Funding
1 997 804 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym FIGHT-CANCER
Project Long non-coding RNAs of tumor infiltrating lymphocytes as novel anti-cancer therapeutic targets
Researcher (PI) Massimiliano Pagani
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary Although tumor tissues can be infiltrated by T cells specific for tumor antigens, the effector functions of these lymphocytes are generally suppressed by CD4+ regulatory T cells (Tregs). Since tumor infiltrating Tregs can display function heterogeneity, depending on both the tumor type and the inflammatory milieu, only inhibition of the right Treg activity should result in the unleash of an effective anti-tumor T cell responses. Experimental plan: To identify the Tregs that truly inhibit anti-tumor T cells, we will profile by RNA-Seq the transcriptome of Tregs infiltrating both tumor and healthy tissues. In particular, we will focus on LncRNAs and the gene networks they modulate, since they have recently emerged as relevant epigenetic regulators of cell differentiation and identity. We will exploit this new knowledge to create a panel of regulatory transcripts, which will be assessed at single cell level on tumor infiltrating Tregs, so to determine the association of specific transcripts with different Treg populations. Since downregulation of specific lncRNAs might be an efficient way to inhibit the “unwanted” Tregs at tumor sites, we aim at targeting lncRNAs uniquely expressed in these Tregs and propose to develop AsiCs, chimeric molecules composed by an aptamer, single stranded oligonucleotides that bind to cell surface markers, and a siRNA, short RNAs downregulating specific lncRNAs. Deliverables and conclusions: this proposal will provide new knowledge on tumor infiltrating Tregs possibly allowing definition of molecular signatures of Tregs with either positive or negative effects on antitumor T cell responses. Moreover, we will develop new molecules that specifically target lncRNAs of interest and that will help identifying new antitumor therapeutic targets. In conclusion, the possibility to modulate Tregs effector functions may not only offer new anti-tumor therapy but more in general may be relevant to any immunomodulatory therapeutic strategies.
Summary
Although tumor tissues can be infiltrated by T cells specific for tumor antigens, the effector functions of these lymphocytes are generally suppressed by CD4+ regulatory T cells (Tregs). Since tumor infiltrating Tregs can display function heterogeneity, depending on both the tumor type and the inflammatory milieu, only inhibition of the right Treg activity should result in the unleash of an effective anti-tumor T cell responses. Experimental plan: To identify the Tregs that truly inhibit anti-tumor T cells, we will profile by RNA-Seq the transcriptome of Tregs infiltrating both tumor and healthy tissues. In particular, we will focus on LncRNAs and the gene networks they modulate, since they have recently emerged as relevant epigenetic regulators of cell differentiation and identity. We will exploit this new knowledge to create a panel of regulatory transcripts, which will be assessed at single cell level on tumor infiltrating Tregs, so to determine the association of specific transcripts with different Treg populations. Since downregulation of specific lncRNAs might be an efficient way to inhibit the “unwanted” Tregs at tumor sites, we aim at targeting lncRNAs uniquely expressed in these Tregs and propose to develop AsiCs, chimeric molecules composed by an aptamer, single stranded oligonucleotides that bind to cell surface markers, and a siRNA, short RNAs downregulating specific lncRNAs. Deliverables and conclusions: this proposal will provide new knowledge on tumor infiltrating Tregs possibly allowing definition of molecular signatures of Tregs with either positive or negative effects on antitumor T cell responses. Moreover, we will develop new molecules that specifically target lncRNAs of interest and that will help identifying new antitumor therapeutic targets. In conclusion, the possibility to modulate Tregs effector functions may not only offer new anti-tumor therapy but more in general may be relevant to any immunomodulatory therapeutic strategies.
Max ERC Funding
1 998 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym GlycoTarget
Project Exploring the targeted delivery of biopharmaceuticals enabled by glycosylation control
Researcher (PI) Nico Luc Marc Callewaert
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary Most biotechnological therapeutics used in the clinic today and under current development, are of protein nature. Eukaryotic expression systems (such as yeasts and mammalian cells) for these therapeutic proteins add carbohydrate moieties (glycans) to the proteins, and these glycans strongly modulate the protein's in vivo biodistribution and therapeutic efficacy. Until recently, no adequate tools were available to accurately control glycosylation structure in these expression systems, but bio-engineering research in our lab and elsewhere has now largely overcome this problem.
In the GlycoTarget ERC Consolidator grant project, we aim at exploring the relation between the structure of the glycans on therapeutic proteins and the in vivo targeting properties of these modified proteins to different tissues/cells/subcellular organelles.
As highly medically relevant test cases for this exploration, we have selected three diseases with strong unmet therapeutic need, that could potentially be treated with glyco-targeted biopharmaceuticals through three different routes of protein delivery: progressive liver disease (intravenous), allergic asthma (subcutaneous immunization) and active tuberculosis (intrapulmonary delivery).
Summary
Most biotechnological therapeutics used in the clinic today and under current development, are of protein nature. Eukaryotic expression systems (such as yeasts and mammalian cells) for these therapeutic proteins add carbohydrate moieties (glycans) to the proteins, and these glycans strongly modulate the protein's in vivo biodistribution and therapeutic efficacy. Until recently, no adequate tools were available to accurately control glycosylation structure in these expression systems, but bio-engineering research in our lab and elsewhere has now largely overcome this problem.
In the GlycoTarget ERC Consolidator grant project, we aim at exploring the relation between the structure of the glycans on therapeutic proteins and the in vivo targeting properties of these modified proteins to different tissues/cells/subcellular organelles.
As highly medically relevant test cases for this exploration, we have selected three diseases with strong unmet therapeutic need, that could potentially be treated with glyco-targeted biopharmaceuticals through three different routes of protein delivery: progressive liver disease (intravenous), allergic asthma (subcutaneous immunization) and active tuberculosis (intrapulmonary delivery).
Max ERC Funding
1 994 760 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym Hairy Cell Leukemia
Project Genetics-driven targeted therapy of Hairy Cell Leukemia
Researcher (PI) Enrico Tiacci
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary Hairy Cell Leukemia (HCL), a chronic B-cell neoplasm, is initially sensitive to chemotherapy with purine analogs, but ~40% of patients eventually relapses and becomes less responsive to these drugs. Furthermore, purine analogs may cause myelotoxicity, immune-suppression and severe opportunistic infections. Therefore, molecularly-targeted less toxic drugs are highly desirable in HCL. However, its low incidence and the initial efficacy of purine analogs has made HCL an orphan in the world of cancer research and has spoiled the academic and industrial interest in developing better treatments for this disease. But recently we identified the V600E activating mutation in the BRAF kinase as the key genetic lesion of HCL (similar to BCR-ABL1 in chronic myeloid leukemia). Orally available specific BRAF inhibitors (e.g., Vemurafenib) have in the meantime showed remarkable efficacy in melanoma patients harboring the BRAF-V600E mutation, although resistance to such drugs eventually develops in this malignancy through reactivation of MEK (the downstream target of BRAF). The ground-breaking objective of this project is to introduce for the first time in HCL, by means of phase-2 investigator-driven pilot clinical trials, the concept of BRAF and/or MEK inhibition as an oral, non chemotherapy-based, entirely out-patient, genetics-driven and rationally designed treatment strategy, first in patients with active disease despite (or severe toxicity from) previous chemotherapy with purine analogs, and then, potentially, in the frontline setting. In comparison to melanoma, deeper and longer effect of BRAF inhibition may be expected in HCL, due to its much lower genetic complexity and proliferation rate. Anyway, potential mechanisms of resistance will be searched for to identify other genes recurrently mutated or aberrantly expressed in HCL patients developing resistance to BRAF inhibition (if any), and the clinical feasibility of combined BRAF and MEK inhibition will be addressed.
Summary
Hairy Cell Leukemia (HCL), a chronic B-cell neoplasm, is initially sensitive to chemotherapy with purine analogs, but ~40% of patients eventually relapses and becomes less responsive to these drugs. Furthermore, purine analogs may cause myelotoxicity, immune-suppression and severe opportunistic infections. Therefore, molecularly-targeted less toxic drugs are highly desirable in HCL. However, its low incidence and the initial efficacy of purine analogs has made HCL an orphan in the world of cancer research and has spoiled the academic and industrial interest in developing better treatments for this disease. But recently we identified the V600E activating mutation in the BRAF kinase as the key genetic lesion of HCL (similar to BCR-ABL1 in chronic myeloid leukemia). Orally available specific BRAF inhibitors (e.g., Vemurafenib) have in the meantime showed remarkable efficacy in melanoma patients harboring the BRAF-V600E mutation, although resistance to such drugs eventually develops in this malignancy through reactivation of MEK (the downstream target of BRAF). The ground-breaking objective of this project is to introduce for the first time in HCL, by means of phase-2 investigator-driven pilot clinical trials, the concept of BRAF and/or MEK inhibition as an oral, non chemotherapy-based, entirely out-patient, genetics-driven and rationally designed treatment strategy, first in patients with active disease despite (or severe toxicity from) previous chemotherapy with purine analogs, and then, potentially, in the frontline setting. In comparison to melanoma, deeper and longer effect of BRAF inhibition may be expected in HCL, due to its much lower genetic complexity and proliferation rate. Anyway, potential mechanisms of resistance will be searched for to identify other genes recurrently mutated or aberrantly expressed in HCL patients developing resistance to BRAF inhibition (if any), and the clinical feasibility of combined BRAF and MEK inhibition will be addressed.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31