Project acronym 321
Project from Cubic To Linear complexity in computational electromagnetics
Researcher (PI) Francesco Paolo ANDRIULLI
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE7, ERC-2016-COG
Summary Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Summary
Computational Electromagnetics (CEM) is the scientific field at the origin of all new modeling and simulation tools required by the constantly arising design challenges of emerging and future technologies in applied electromagnetics. As in many other technological fields, however, the trend in all emerging technologies in electromagnetic engineering is going towards miniaturized, higher density and multi-scale scenarios. Computationally speaking this translates in the steep increase of the number of degrees of freedom. Given that the design cost (the cost of a multi-right-hand side problem dominated by matrix inversion) can scale as badly as cubically with these degrees of freedom, this fact, as pointed out by many, will sensibly compromise the practical impact of CEM on future and emerging technologies.
For this reason, the CEM scientific community has been looking for years for a FFT-like paradigm shift: a dynamic fast direct solver providing a design cost that would scale only linearly with the degrees of freedom. Such a fast solver is considered today a Holy Grail of the discipline.
The Grand Challenge of 321 will be to tackle this Holy Grail in Computational Electromagnetics by investigating a dynamic Fast Direct Solver for Maxwell Problems that would run in a linear-instead-of-cubic complexity for an arbitrary number and configuration of degrees of freedom.
The failure of all previous attempts will be overcome by a game-changing transformation of the CEM classical problem that will leverage on a recent breakthrough of the PI. Starting from this, the project will investigate an entire new paradigm for impacting algorithms to achieve this grand challenge.
The impact of the FFT’s quadratic-to-linear paradigm shift shows how computational complexity reductions can be groundbreaking on applications. The cubic-to-linear paradigm shift, which the 321 project will aim for, will have such a rupturing impact on electromagnetic science and technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AB-SWITCH
Project Evaluation of commercial potential of a low-cost kit based on DNA-nanoswitches for the single-step measurement of diagnostic antibodies
Researcher (PI) Francesco RICCI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Proof of Concept (PoC), ERC-2016-PoC, ERC-2016-PoC
Summary "Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Summary
"Antibodies are among the most widely monitored class of diagnostic biomarkers. Immunoassays market now covers about 1/3 of the global market of in-vitro diagnostics (about $50 billion). However, current methods for the detection of diagnostic antibodies are either qualitative or require cumbersome, resource-intensive laboratory procedures that need hours to provide clinicians with diagnostic information. A new method for fast and low-cost detection of antibodies will have a strong economic impact in the market of in-vitro diagnostics and Immunoassays.
During our ERC Starting Grant project ""Nature Nanodevices"" we have developed a novel diagnostic technology for the detection of clinically relevant antibodies in serum and other body fluids. The platform (here named Ab-switch) supports the fluorescent detection of diagnostic antibodies (for example, HIV diagnostic antibodies) in a rapid (<3 minutes), single-step and low-cost fashion.
The goal of this Proof of Concept project is to bring our promising platform to the proof of diagnostic market and exploit its innovative features for commercial purposes. We will focus our initial efforts in the development of rapid kits for the detection of antibodies diagnostic of HIV. We will 1) Fully characterize the Ab-switch product in terms of analytical performances (i.e. sensitivity, specificity, stability etc.) with direct comparison with other commercial kits; 2) Prepare a Manufacturing Plan for producing/testing the Ab-switch; 3) Establish an IP strategy for patent filing and maintenance; 4) Determine a business and commercialization planning."
Max ERC Funding
150 000 €
Duration
Start date: 2017-02-01, End date: 2018-07-31
Project acronym AlchemEast
Project Alchemy in the Making: From ancient Babylonia via Graeco-Roman Egypt into the Byzantine, Syriac and Arabic traditions (1500 BCE - 1000 AD)
Researcher (PI) Matteo MARTELLI
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Consolidator Grant (CoG), SH5, ERC-2016-COG
Summary The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Summary
The AlchemEast project is devoted to the study of alchemical theory and practice as it appeared and developed in distinct, albeit contiguous (both chronologically and geographically) areas: Graeco-Roman Egypt, Byzantium, and the Near East, from Ancient Babylonian times to the early Islamic Period. This project combines innovative textual investigations with experimental replications of ancient alchemical procedures. It uses sets of historically and philologically informed laboratory replications in order to reconstruct the actual practice of ancient alchemists, and it studies the texts and literary forms in which this practice was conceptualized and transmitted. It proposes new models for textual criticism in order to capture the fluidity of the transmission of ancient alchemical writings. AlchemEast is designed to carry out a comparative investigation of cuneiform tablets as well as a vast corpus of Greek, Syriac and Arabic writings. It will overcome the old, pejorative paradigm that dismissed ancient alchemy as a "pseudo-science", by proposing a new theoretical framework for comprehending the entirety of ancient alchemical practices and theories. Alongside established forms of scholarly output, such as critical editions of key texts, AlchemEast will provide an integrative, longue durée perspective on the many different phases of ancient alchemy. It will thus offer a radically new vision of this discipline as a dynamic and diversified art that developed across different technical and scholastic traditions. This new representation will allow us to connect ancient alchemy with medieval and early modern alchemy and thus fully reintegrate ancient alchemy in the history of pre-modern alchemy as well as in the history of ancient science more broadly.
Max ERC Funding
1 997 000 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ARS
Project Autonomous Robotic Surgery
Researcher (PI) Paolo FIORINI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI VERONA
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary The goal of the ARS project is the derivation of a unified framework for the autonomous execution of robotic tasks in challenging environments in which accurate performance and safety are of paramount importance. We have chosen surgery as the research scenario because of its importance, its intrinsic challenges, and the presence of three factors that make this project feasible and timely. In fact, we have recently concluded the I-SUR project demonstrating the feasibility of autonomous surgical actions, we have access to the first big data made available to researchers of clinical robotic surgeries, and we will be able to demonstrate the project results on the high performance surgical robot “da Vinci Research Kit”. The impact of autonomous robots on the workforce is a current subject of discussion, but surgical autonomy will be welcome by the medical personnel, e.g. to carry out simple intervention steps, react faster to unexpected events, or monitor the insurgence of fatigue. The framework for autonomous robotic surgery will include five main research objectives. The first will address the analysis of robotic surgery data set to extract action and knowledge models of the intervention. The second objective will focus on planning, which will consist of instantiating the intervention models to a patient specific anatomy. The third objective will address the design of the hybrid controllers for the discrete and continuous parts of the intervention. The fourth research objective will focus on real time reasoning to assess the intervention state and the overall surgical situation. Finally, the last research objective will address the verification, validation and benchmark of the autonomous surgical robotic capabilities. The research results to be achieved by ARS will contribute to paving the way towards enhancing autonomy and operational capabilities of service robots, with the ambitious goal of bridging the gap between robotic and human task execution capability.
Summary
The goal of the ARS project is the derivation of a unified framework for the autonomous execution of robotic tasks in challenging environments in which accurate performance and safety are of paramount importance. We have chosen surgery as the research scenario because of its importance, its intrinsic challenges, and the presence of three factors that make this project feasible and timely. In fact, we have recently concluded the I-SUR project demonstrating the feasibility of autonomous surgical actions, we have access to the first big data made available to researchers of clinical robotic surgeries, and we will be able to demonstrate the project results on the high performance surgical robot “da Vinci Research Kit”. The impact of autonomous robots on the workforce is a current subject of discussion, but surgical autonomy will be welcome by the medical personnel, e.g. to carry out simple intervention steps, react faster to unexpected events, or monitor the insurgence of fatigue. The framework for autonomous robotic surgery will include five main research objectives. The first will address the analysis of robotic surgery data set to extract action and knowledge models of the intervention. The second objective will focus on planning, which will consist of instantiating the intervention models to a patient specific anatomy. The third objective will address the design of the hybrid controllers for the discrete and continuous parts of the intervention. The fourth research objective will focus on real time reasoning to assess the intervention state and the overall surgical situation. Finally, the last research objective will address the verification, validation and benchmark of the autonomous surgical robotic capabilities. The research results to be achieved by ARS will contribute to paving the way towards enhancing autonomy and operational capabilities of service robots, with the ambitious goal of bridging the gap between robotic and human task execution capability.
Max ERC Funding
2 750 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BEAT
Project The functional interaction of EGFR and beta-catenin signalling in colorectal cancer: Genetics, mechanisms, and therapeutic potential.
Researcher (PI) Andrea BERTOTTI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Summary
Monoclonal antibodies against the EGF receptor (EGFR) provide substantive benefit to colorectal cancer (CRC) patients. However, no genetic lesions that robustly predict ‘addiction’ to the EGFR pathway have been yet identified. Further, even in tumours that regress after EGFR blockade, subsets of drug-tolerant cells often linger and foster ‘minimal residual disease’ (MRD), which portends tumour relapse.
Our preliminary evidence suggests that reliance on EGFR activity, as opposed to MRD persistence, could be assisted by genetically-based variations in transcription factor partnerships and activities, gene expression outputs, and biological fates controlled by the WNT/beta-catenin pathway. On such premises, BEAT (Beta-catenin and EGFR Abrogation Therapy) will elucidate the mechanisms of EGFR dependency, and escape from it, with the goal to identify biomarkers for more efficient clinical management of CRC and develop new therapies for MRD eradication.
A multidisciplinary approach will be pursued spanning from integrative gene regulation analyses to functional genomics in vitro, pharmacological experiments in vivo, and clinical investigation, to address whether: (i) specific genetic alterations of the WNT pathway affect anti-EGFR sensitivity; (ii) combined neutralisation of EGFR and WNT signals fuels MRD deterioration; (iii) data from analysis of this synergy can lead to the discovery of clinically meaningful biomarkers with predictive and prognostic significance.
This proposal capitalises on a unique proprietary platform for high-content studies based on a large biobank of viable CRC samples, which ensures strong analytical power and unprecedented biological flexibility. By providing fresh insight into the mechanisms whereby WNT/beta-catenin signalling differentially sustains EGFR dependency or drug tolerance, the project is expected to put forward an innovative reinterpretation of CRC molecular bases and advance the rational application of more effective therapies.
Max ERC Funding
1 793 421 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BONEPHAGY
Project Defining the role of the FGF – autophagy axis in bone physiology
Researcher (PI) Carmine SETTEMBRE
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Summary
Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Max ERC Funding
1 586 430 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CAPABLE
Project Composite integrated photonic platform by femtosecond laser micromachining
Researcher (PI) Roberto OSELLAME
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary The quantum technology revolution promises a transformational impact on the society and economics worldwide. It will enable breakthrough advancements in such diverse fields as secure communications, computing, metrology, and imaging. Quantum photonics, which recently received an incredible boost by the use of integrated optical circuits, is an excellent technological platform to enable such revolution, as it already plays a relevant role in many of the above applications. However, some major technical roadblocks needs to be overcome. Currently, the various components required for a complete quantum photonic system are produced on very different materials by dedicated fabrication technologies, as no single material is able to fulfil all the requirements for single-photon generation, manipulation, storage and detection. This project proposes a new hybrid approach for integrated quantum photonic systems based on femtosecond laser microfabrication (FLM), enabling the innovative miniaturization of various components on different materials, but with a single tool and with very favourable integration capabilities.
This project will mainly focus on two major breakthroughs: the first one will be increasing the complexity achievable in the photonic platform and demonstrating unprecedented quantum computation capability; the second one will be the integration in the platform of multiple single-photon quantum memories and their interconnection.
Achievement of these goals will only be possible by taking full advantage of the unique features of FLM, from the possibility to machine very different materials, to the 3D capabilities in waveguide writing and selective material removal.
The successful demonstration and functional validation of this hybrid, integrated photonic platform will represent a significant leap for photonic microsystems in quantum computing and quantum communications.
Summary
The quantum technology revolution promises a transformational impact on the society and economics worldwide. It will enable breakthrough advancements in such diverse fields as secure communications, computing, metrology, and imaging. Quantum photonics, which recently received an incredible boost by the use of integrated optical circuits, is an excellent technological platform to enable such revolution, as it already plays a relevant role in many of the above applications. However, some major technical roadblocks needs to be overcome. Currently, the various components required for a complete quantum photonic system are produced on very different materials by dedicated fabrication technologies, as no single material is able to fulfil all the requirements for single-photon generation, manipulation, storage and detection. This project proposes a new hybrid approach for integrated quantum photonic systems based on femtosecond laser microfabrication (FLM), enabling the innovative miniaturization of various components on different materials, but with a single tool and with very favourable integration capabilities.
This project will mainly focus on two major breakthroughs: the first one will be increasing the complexity achievable in the photonic platform and demonstrating unprecedented quantum computation capability; the second one will be the integration in the platform of multiple single-photon quantum memories and their interconnection.
Achievement of these goals will only be possible by taking full advantage of the unique features of FLM, from the possibility to machine very different materials, to the 3D capabilities in waveguide writing and selective material removal.
The successful demonstration and functional validation of this hybrid, integrated photonic platform will represent a significant leap for photonic microsystems in quantum computing and quantum communications.
Max ERC Funding
2 381 875 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CHIMERA
Project A novel instrument to identify chiral molecules for pharmaceutics and bio-chemistry.
Researcher (PI) Dario POLLI
Host Institution (HI) POLITECNICO DI MILANO
Call Details Proof of Concept (PoC), PC1, ERC-2016-PoC
Summary This proposal aims at bringing to the market a revolutionary device to uniquely identify the chirality of molecules. An object is chiral if it differs from its mirror image, like our left and right hands. Chirality plays an extremely important role in two main fields: (1) Many drugs are chiral and selecting one of the two forms often enables the pharma industry to extend patent franchise, thus increasing profitability, and to improve the quality, safety and efficacy of the drug. (2) Researchers in the chemistry and biophysics labs use chirality as an indication of the 3D structural conformation of proteins and DNA, to study e.g. their secondary structure and stability under external stimuli. Spectrometers for measuring chirality already exist in the market. Many customers in the two aforementioned sectors could be interested in the new product we propose because it presents several advantages, namely a 2-fold reduction of the price, a 4-fold shrinking of the footprint and an increased information content. The ground-breaking concept (under patenting) behind this new spectrometer is to employ an ultra-stable interferometer to measure the chiral spectrum of molecules via a Fourier-transform approach and a heterodyne amplification of the signal. A first working prototype has already been realized and tested. The CHIMERA project has two main goals. (1) We aim at unleashing the innovation potential of the approach, by technically validating two prototypes in a pharmaceutical company and a biochemistry research lab, thus pushing the Technology Readiness Level of the system to the ultimate maturity required to approach the market, corresponding to TRL9. (2) We will design a complete exploitation plan, performing a thorough analysis of the market, developing a financing strategy, benchmarking our instrument against the competitors’ ones, profiling strategic partners and drafting a first version of a Business Plan to decide on the opportunity to found a start-up company.
Summary
This proposal aims at bringing to the market a revolutionary device to uniquely identify the chirality of molecules. An object is chiral if it differs from its mirror image, like our left and right hands. Chirality plays an extremely important role in two main fields: (1) Many drugs are chiral and selecting one of the two forms often enables the pharma industry to extend patent franchise, thus increasing profitability, and to improve the quality, safety and efficacy of the drug. (2) Researchers in the chemistry and biophysics labs use chirality as an indication of the 3D structural conformation of proteins and DNA, to study e.g. their secondary structure and stability under external stimuli. Spectrometers for measuring chirality already exist in the market. Many customers in the two aforementioned sectors could be interested in the new product we propose because it presents several advantages, namely a 2-fold reduction of the price, a 4-fold shrinking of the footprint and an increased information content. The ground-breaking concept (under patenting) behind this new spectrometer is to employ an ultra-stable interferometer to measure the chiral spectrum of molecules via a Fourier-transform approach and a heterodyne amplification of the signal. A first working prototype has already been realized and tested. The CHIMERA project has two main goals. (1) We aim at unleashing the innovation potential of the approach, by technically validating two prototypes in a pharmaceutical company and a biochemistry research lab, thus pushing the Technology Readiness Level of the system to the ultimate maturity required to approach the market, corresponding to TRL9. (2) We will design a complete exploitation plan, performing a thorough analysis of the market, developing a financing strategy, benchmarking our instrument against the competitors’ ones, profiling strategic partners and drafting a first version of a Business Plan to decide on the opportunity to found a start-up company.
Max ERC Funding
149 375 €
Duration
Start date: 2017-05-01, End date: 2018-10-31
Project acronym CholAminCo
Project Synergy and antagonism of cholinergic and dopaminergic systems in associative learning
Researcher (PI) Balazs Gyoergy HANGYA
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Summary
Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Max ERC Funding
1 499 463 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym ClustersXCosmo
Project Fundamental physics, Cosmology and Astrophysics: Galaxy Clusters at the Cross-roads
Researcher (PI) Alexandro SARO
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRIESTE
Call Details Starting Grant (StG), PE9, ERC-2016-STG
Summary The ClustersXCosmo ERC Starting Grant proposal has the goal of investigating the role of Galaxy Clusters as a cosmological probe and of exploiting the strong synergies between observational cosmology, galaxy formation and fundamental physics related to the tracers of the extreme peaks in the matter density field. In the last decade, astronomical data-sets have started to be widely and quantitatively used by the scientific community to address important physical questions such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; the variation of fundamental constants over cosmic time; the sum of neutrino masses; the interplay between the galaxy population and the intergalactic medium; the nature of gravity over megaparsec scales and over cosmic times; the temperature evolution of the Universe. Most of these results are based on well-established geometrical cosmological probes (e.g., galaxies, supernovae, cosmic microwave background). Galaxy clusters provide a complementary and necessary approach, as their distribution as a function of time and observables is sensitive to both the geometrical and the dynamical evolution of the Universe, driven by the growth of structures. Among different cluster surveys, Sunyaev Zel'Dovich effect (SZE) detected catalogs have registered the most dramatic improvement over the last ~5 years, yielding samples extending up to the earliest times these systems appeared. This proposal aims at using a combination of the best available SZE cluster surveys and to interpret them by means of state-of-the-art computational facilities in order to firmly establish the yet controversial role of Galaxy Clusters as a probe for cosmology, fundamental physics and astrophysics. The timely convergence of current and next generation multi-wavelength surveys (DES/SPT/Planck/eRosita/Euclid) will be important to establish the role of Galaxy Clusters as a cosmological tool.
Summary
The ClustersXCosmo ERC Starting Grant proposal has the goal of investigating the role of Galaxy Clusters as a cosmological probe and of exploiting the strong synergies between observational cosmology, galaxy formation and fundamental physics related to the tracers of the extreme peaks in the matter density field. In the last decade, astronomical data-sets have started to be widely and quantitatively used by the scientific community to address important physical questions such as: the nature of the dark matter and dark energy components and their evolution; the physical properties of the baryonic matter; the variation of fundamental constants over cosmic time; the sum of neutrino masses; the interplay between the galaxy population and the intergalactic medium; the nature of gravity over megaparsec scales and over cosmic times; the temperature evolution of the Universe. Most of these results are based on well-established geometrical cosmological probes (e.g., galaxies, supernovae, cosmic microwave background). Galaxy clusters provide a complementary and necessary approach, as their distribution as a function of time and observables is sensitive to both the geometrical and the dynamical evolution of the Universe, driven by the growth of structures. Among different cluster surveys, Sunyaev Zel'Dovich effect (SZE) detected catalogs have registered the most dramatic improvement over the last ~5 years, yielding samples extending up to the earliest times these systems appeared. This proposal aims at using a combination of the best available SZE cluster surveys and to interpret them by means of state-of-the-art computational facilities in order to firmly establish the yet controversial role of Galaxy Clusters as a probe for cosmology, fundamental physics and astrophysics. The timely convergence of current and next generation multi-wavelength surveys (DES/SPT/Planck/eRosita/Euclid) will be important to establish the role of Galaxy Clusters as a cosmological tool.
Max ERC Funding
1 230 403 €
Duration
Start date: 2017-09-01, End date: 2022-08-31