Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym BIGlobal
Project Firm Growth and Market Power in the Global Economy
Researcher (PI) Swati DHINGRA
Host Institution (HI) LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Call Details Starting Grant (StG), SH1, ERC-2017-STG
Summary According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Summary
According to the European Commission, to design effective policies for ensuring a “more dynamic, innovative and competitive” economy, it is essential to understand the decision-making process of firms as they differ a lot in terms of their capacities and policy responses (EC 2007). The objective of my future research is to provide such an analysis. BIGlobal will examine the sources of firm growth and market power to provide new insights into welfare and policy in a globalized world.
Much of analysis of the global economy is set in the paradigm of markets that allocate resources efficiently and there is little role for policy. But big firms dominate economic activity, especially across borders. How do firms grow and what is the effect of their market power on the welfare impact of globalization? This project will determine how firm decisions matter for the aggregate gains from globalization, the division of these gains across different individuals and their implications for policy design.
Over the next five years, I will incorporate richer firms behaviour in models of international trade to understand how trade and industrial policies impact the growth process, especially in less developed markets. The specific questions I will address include: how can trade and competition policy ensure consumers benefit from globalization when firms engaged in international trade have market power, how do domestic policies to encourage agribusiness firms affect the extent to which small farmers gain from trade, how do industrial policies affect firm growth through input linkages, and what is the impact of banking globalization on the growth of firms in the real sector.
Each project will combine theoretical work with rich data from developing economies to expand the frontier of knowledge on trade and industrial policy, and to provide a basis for informed policymaking.
Max ERC Funding
1 313 103 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym BioMet
Project Selective Functionalization of Saturated Hydrocarbons
Researcher (PI) Ilan MAREK
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Summary
Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.
Max ERC Funding
2 499 375 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym CheSSTaG
Project Chemotactic Super-Selective Targeting of Gliomas
Researcher (PI) Giuseppe BATTAGLIA
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary I propose here a research program aimed to the design a completely new platform for drug delivery. I will combine our existing repertoire of molecular engineering tools based around our established approach to design responsive nanoparticles known as Polymersomes to integrate new features using clinically safe and biodegradable components that will make them super-selective and chemotactic toward glucose gradients so to deliver large therapeutic payload into the central nervous systems and the brain in particular targeting cancer cells harbouring within the healthy. We will do so by engineering components using supramolecular interaction inspired by biological complexity equipping carriers with the ability to self-propelled as a function of glucose gradient. I will complement our proposed design with advanced biological characterisation associating functional information arising form the physiological barrier to structural parameters integrated into the final carrier design.
Summary
I propose here a research program aimed to the design a completely new platform for drug delivery. I will combine our existing repertoire of molecular engineering tools based around our established approach to design responsive nanoparticles known as Polymersomes to integrate new features using clinically safe and biodegradable components that will make them super-selective and chemotactic toward glucose gradients so to deliver large therapeutic payload into the central nervous systems and the brain in particular targeting cancer cells harbouring within the healthy. We will do so by engineering components using supramolecular interaction inspired by biological complexity equipping carriers with the ability to self-propelled as a function of glucose gradient. I will complement our proposed design with advanced biological characterisation associating functional information arising form the physiological barrier to structural parameters integrated into the final carrier design.
Max ERC Funding
2 081 747 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym CoMMaD
Project Computational Molecular Materials Discovery
Researcher (PI) Kim JELFS
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary The objective of the project is to develop a computational approach to accelerate the discovery of molecular materials. These materials will include porous molecules, small organic molecules and macromolecular polymers, which have application as a result of either their porosity or optoelectronic properties. The applications that will be targeted include in molecular separations, sensing, (photo)catalysis and photovoltaics. To achieve my aims, I will screen libraries of building blocks through a combination of techniques including evolutionary algorithms and machine learning. Through the application of cheminformatics algorithms, I will target the most promising libraries, assess synthetic diversity and accessibility and analyse structure-property relationships. I will develop software that will predict the (macro)molecular structures and properties; the molecular property screening calculations will include void characterisation, binding energies, diffusion barriers, local assembly, charge transport and energy level assessment. A consideration of synthetic accessibility at every stage will be central to my approach, which will ensure the realisation of our predicted targets. I have several synthetic collaborators who can provide pathways to synthetic realisation. Improved materials in this field have the potential to either reduce our energy needs or provide renewable energy, helping the EU meet the targets of the 2030 Energy Strategy.
Summary
The objective of the project is to develop a computational approach to accelerate the discovery of molecular materials. These materials will include porous molecules, small organic molecules and macromolecular polymers, which have application as a result of either their porosity or optoelectronic properties. The applications that will be targeted include in molecular separations, sensing, (photo)catalysis and photovoltaics. To achieve my aims, I will screen libraries of building blocks through a combination of techniques including evolutionary algorithms and machine learning. Through the application of cheminformatics algorithms, I will target the most promising libraries, assess synthetic diversity and accessibility and analyse structure-property relationships. I will develop software that will predict the (macro)molecular structures and properties; the molecular property screening calculations will include void characterisation, binding energies, diffusion barriers, local assembly, charge transport and energy level assessment. A consideration of synthetic accessibility at every stage will be central to my approach, which will ensure the realisation of our predicted targets. I have several synthetic collaborators who can provide pathways to synthetic realisation. Improved materials in this field have the potential to either reduce our energy needs or provide renewable energy, helping the EU meet the targets of the 2030 Energy Strategy.
Max ERC Funding
1 499 390 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym COMPLEXORDER
Project The Complexity Revolution: Exploiting Unconventional Order in Next-Generation Materials Design
Researcher (PI) Andrew GOODWIN
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Summary
The fundamental objective of the research described in this proposal is to lay the foundations for understanding how structural complexity can give rise to materials properties inaccessible to structurally-simple states. The long-term vision is a paradigm shift in the way we as chemists design materials—the “Complexity Revolution”—where we move to thinking beyond the unit cell and harness unconventional order to generate emergent states with entirely novel behaviour. The key methodologies of the project are (i) exploitation of the rich structural information accessible using 3D-PDF / diffuse scattering techniques, (ii) exploration of the phase behaviour of unconventional ordered states using computational methods, and (iii) experimental/computational studies of a broad range of materials in which complexity arises from a large variety of different phenemona. In this way, the project will establish how we might controllably introduce complexity into materials by varying chemical composition and synthesis, how we might then characterise these complex states, and how we might exploit this complexity when designing next-generation materials with unprecedented electronic, catalytic, photonic, information storage, dielectric, topological, and magnetic properties.
Max ERC Funding
3 362 635 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym DEVORHBIOSHIP
Project The Developmental Origins of Health: Biology, Shocks, Investments, and Policies
Researcher (PI) Gabriella CONTI
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), SH1, ERC-2018-COG
Summary What are the origins of inequalities in health? A recent literature in economics has established causal impacts of early life shocks, investments and policies on lifelong health. However, several unknowns remain. The mechanisms through which shocks, investments, and policies interact are just beginning to be understood. Our knowledge of sensitive periods is imprecise. Little is also known about the impact of shocks and policies across different ages. Commonly used health capital measures, such as birth weight, lack sensitivity and specificity. The interplay between genes and environments in the formation of health inequalities is poorly understood.
To fill these gaps, I will build on insights from my earlier work, and use a combination of high-quality data, more sensitive measures, robust identification strategies and richer models to untangle the complex interactions between biology, shocks, investments and policies.
First, I will investigate causal impacts and mechanisms of two public health policies on child health and development: medical treatments for pregnancy complications and prenatal home visiting programmes. Second, I will examine the effects of two environmental shocks (pollution and influenza) on the formation of early health and human capital, and their interplay with maternal investments in nutrition. Third, I will study interactions between shocks, investments and policies from birth to adulthood, to understand the dynamic interplay between SES and health. Throughout, I will explore their interactions with genetic susceptibility or potential.
I will analyse administrative records, registries linked to survey data, cohort data with biomarkers; and a randomized controlled trial. I will use state-of-the-art econometric techniques for observational and experimental data. My findings will have direct policy implications and will help understand whether and to which extent early life interventions are a cost-effective mean to promote health.
Summary
What are the origins of inequalities in health? A recent literature in economics has established causal impacts of early life shocks, investments and policies on lifelong health. However, several unknowns remain. The mechanisms through which shocks, investments, and policies interact are just beginning to be understood. Our knowledge of sensitive periods is imprecise. Little is also known about the impact of shocks and policies across different ages. Commonly used health capital measures, such as birth weight, lack sensitivity and specificity. The interplay between genes and environments in the formation of health inequalities is poorly understood.
To fill these gaps, I will build on insights from my earlier work, and use a combination of high-quality data, more sensitive measures, robust identification strategies and richer models to untangle the complex interactions between biology, shocks, investments and policies.
First, I will investigate causal impacts and mechanisms of two public health policies on child health and development: medical treatments for pregnancy complications and prenatal home visiting programmes. Second, I will examine the effects of two environmental shocks (pollution and influenza) on the formation of early health and human capital, and their interplay with maternal investments in nutrition. Third, I will study interactions between shocks, investments and policies from birth to adulthood, to understand the dynamic interplay between SES and health. Throughout, I will explore their interactions with genetic susceptibility or potential.
I will analyse administrative records, registries linked to survey data, cohort data with biomarkers; and a randomized controlled trial. I will use state-of-the-art econometric techniques for observational and experimental data. My findings will have direct policy implications and will help understand whether and to which extent early life interventions are a cost-effective mean to promote health.
Max ERC Funding
1 738 763 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym DISCOVER
Project Design of Mixed Anion Inorganic Semiconductors for Energy Conversion
Researcher (PI) David SCANLON
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary Multi-component systems offer the chemical and structural flexibility necessary to meet the needs of next-generation energy conversion. The vast majority of work in the field has focused on mixed-metal compounds. DISCOVER will computationally explore mixed-anion compounds. These are complex systems that provide significant technical challenges for atomistic and electronic structure modelling. Currently, structure-property relationships are poorly developed and there is a distinct lack of understanding of order-disorder transitions. Crucially, no systematic approach has been established for designing new combinations which can be tailored to match the criteria for technological applications.
This project aims to utilize advanced computational techniques to: (i) understand trends in existing mixed anion systems, and (ii) to employ state of the art crystal structure prediction codes to investigate novel ternary and quaternary mixed-anion compositions. The structure-property information emanating from this analysis will allow us to develop design principles for mixed anion semiconductors, which we will use to predict prototype systems for energy conversion. Promising candidates will be experimentally tested through a collaborative network of experts in the field. This ambitious project will push the boundaries of computational materials design, through the use of both classical and electronic structure simulation techniques for bulk, surface and excited states calculations.
The principle outcome will be a novel understanding of how to controllably design mixed anion semiconductors for technological applications, which will drive this material class to the forefront of materials science, while establishing my group at the frontier of computational materials science.
Summary
Multi-component systems offer the chemical and structural flexibility necessary to meet the needs of next-generation energy conversion. The vast majority of work in the field has focused on mixed-metal compounds. DISCOVER will computationally explore mixed-anion compounds. These are complex systems that provide significant technical challenges for atomistic and electronic structure modelling. Currently, structure-property relationships are poorly developed and there is a distinct lack of understanding of order-disorder transitions. Crucially, no systematic approach has been established for designing new combinations which can be tailored to match the criteria for technological applications.
This project aims to utilize advanced computational techniques to: (i) understand trends in existing mixed anion systems, and (ii) to employ state of the art crystal structure prediction codes to investigate novel ternary and quaternary mixed-anion compositions. The structure-property information emanating from this analysis will allow us to develop design principles for mixed anion semiconductors, which we will use to predict prototype systems for energy conversion. Promising candidates will be experimentally tested through a collaborative network of experts in the field. This ambitious project will push the boundaries of computational materials design, through the use of both classical and electronic structure simulation techniques for bulk, surface and excited states calculations.
The principle outcome will be a novel understanding of how to controllably design mixed anion semiconductors for technological applications, which will drive this material class to the forefront of materials science, while establishing my group at the frontier of computational materials science.
Max ERC Funding
1 499 998 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DYNAFLUORS
Project Dynamic Activatable Fluorophores
Researcher (PI) Marc VENDRELL ESCOBAR
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary In DYNAFLUORS I will develop the first chemical toolbox for imaging in real time the activity of immune cells in tumours.
Although the management of cancer has improved over the years, the cure rates for patients with metastasis and advanced tumours remain low due to lack of appropriate therapies. Recent studies suggest that drugs empowering host immune cells (i.e. immunotherapies) are promising approaches for intractable tumours. However, there are no tools to visualise and understand how host immune cells stop cancer progression in vivo. This important unmet challenge drives the ambitious targets of this proposal.
Over the past 10 years, I have pioneered the development of chemical fluorophores that allow unparalleled analysis of biological systems. In this project, I will implement an innovative approach to unify cutting-edge methodologies in chemistry and biology and develop Dynamic Activatable Fluorophores (DYNAFLUORS) as a chemical toolbox with enhanced imaging capabilities over current technologies.
The cross-disciplinary and ambitious nature of this project will open multiple avenues for broad impact in many areas of chemistry as well as in basic biology, imaging and medicine. DYNAFLUORS will allow us to image, from the molecular level to human tissue, the activity of immune cells in tumours and the response to therapy in real time. This ground-breaking chemical platform will represent a step forward in the forefront of chemical imaging and will create new opportunities in the personalised management of cancer.
In the long term, DYNAFLUORS will become a transformative toolbox for monitoring disease in humans. The integration of functional fluorophores into imaging technologies to perform ‘optical biopsies’ in vivo and to create patient-specific drug-response assays has the potential to revolutionise the diagnosis, stratification and personalised treatment of disease.
Summary
In DYNAFLUORS I will develop the first chemical toolbox for imaging in real time the activity of immune cells in tumours.
Although the management of cancer has improved over the years, the cure rates for patients with metastasis and advanced tumours remain low due to lack of appropriate therapies. Recent studies suggest that drugs empowering host immune cells (i.e. immunotherapies) are promising approaches for intractable tumours. However, there are no tools to visualise and understand how host immune cells stop cancer progression in vivo. This important unmet challenge drives the ambitious targets of this proposal.
Over the past 10 years, I have pioneered the development of chemical fluorophores that allow unparalleled analysis of biological systems. In this project, I will implement an innovative approach to unify cutting-edge methodologies in chemistry and biology and develop Dynamic Activatable Fluorophores (DYNAFLUORS) as a chemical toolbox with enhanced imaging capabilities over current technologies.
The cross-disciplinary and ambitious nature of this project will open multiple avenues for broad impact in many areas of chemistry as well as in basic biology, imaging and medicine. DYNAFLUORS will allow us to image, from the molecular level to human tissue, the activity of immune cells in tumours and the response to therapy in real time. This ground-breaking chemical platform will represent a step forward in the forefront of chemical imaging and will create new opportunities in the personalised management of cancer.
In the long term, DYNAFLUORS will become a transformative toolbox for monitoring disease in humans. The integration of functional fluorophores into imaging technologies to perform ‘optical biopsies’ in vivo and to create patient-specific drug-response assays has the potential to revolutionise the diagnosis, stratification and personalised treatment of disease.
Max ERC Funding
1 986 650 €
Duration
Start date: 2018-06-01, End date: 2023-05-31