Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym AFFIRM
Project Analysis of Biofilm Mediated Fouling of Nanofiltration Membranes
Researcher (PI) Eoin Casey
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary 1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Summary
1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Max ERC Funding
1 468 987 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym BeyondOpposition
Project Opposing Sexual and Gender Rights and Equalities: Transforming Everyday Spaces
Researcher (PI) Katherine Browne
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Summary
OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Max ERC Funding
1 988 652 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BIC
Project Cavitation across scales: following Bubbles from Inception to Collapse
Researcher (PI) Carlo Massimo Casciola
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g., cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.
The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.
Summary
Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g., cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.
The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.
Max ERC Funding
2 491 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIHSNAM
Project Bio-inspired Hierarchical Super Nanomaterials
Researcher (PI) Nicola Pugno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRENTO
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Summary
"Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Max ERC Funding
1 004 400 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BIORECAR
Project Direct cell reprogramming therapy in myocardial regeneration through an engineered multifunctional platform integrating biochemical instructive cues
Researcher (PI) Valeria CHIONO
Host Institution (HI) POLITECNICO DI TORINO
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Summary
In BIORECAR I will develop a new breakthrough multifunctional biomaterial-based platform for myocardial regeneration after myocardial infarction, provided with biochemical cues able to enhance the direct reprogramming of human cardiac fibroblasts into functional cardiomyocytes.
My expertise in bioartificial materials and biomimetic scaffolds and the versatile chemistry of polyurethanes will be the key elements to achieve a significant knowledge and technological advancement in cell reprogramming therapy, opening the way to the future translation of the therapy into the clinics.
I will implement this advanced approach through the design of a novel 3D in vitro tissue-engineered model of human cardiac fibrotic tissue, as a tool for testing and validation, to maximise research efforts and reduce animal tests.
I will adapt novel nanomedicine approaches I have recently developed for drug release to design innovative cell-friendly and efficient polyurethane nanoparticles for targeted reprogramming of cardiac fibroblasts.
I will design an injectable bioartificial hydrogel based on a blend of a thermosensitive polyurethane and a natural component selected among a novel cell-secreted natural polymer mixture (“biomatrix”) recapitulating the complexity of cardiac extracellular matrix or one of its main protein constituents. Such multifunctional hydrogel will deliver in situ agents stimulating recruitment of cardiac fibroblasts together with the nanoparticles loaded with reprogramming therapeutics, and will provide biochemical signalling to stimulate efficient conversion of fibroblasts into mature cardiomyocytes.
First-in-field biomaterials-based innovations introduced by BIORECAR will enable more effective regeneration of functional myocardial tissue respect to state-of-the art approaches. BIORECAR innovation is multidisciplinary in nature and will be accelerated towards future clinical translation through my clinical, scientific and industrial collaborations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIT-ACT
Project Bottom-up initiatives and anti-corruption technologies: how citizens use ICTs to fight corruption
Researcher (PI) Alice Mattoni
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Call Details Starting Grant (StG), SH2, ERC-2018-STG
Summary Corruption is a global challenge that affects the lives of millions of citizens. In the past decade, Information and Communication Technologies (ICTs) have become indispensable tools in the fight to reduce corruption, especially when employed from the bottom-up by civil society organizations. While pioneering initiatives in this direction have flourished, to date we only have unsystematic and descriptive evidence regarding how they work and the associated consequences. With the objective of significantly advancing knowledge on this topic, BIT-ACT will open a new line of inquiry by investigating what I call anti-corruption technologies (ACTs) to: (1) assess how civil society organizations engage with ACTs to counter corruption, (2) appraise how ACTs enable intersections between bottom-up and top-down efforts against corruption, and (3) evaluate how ACTs blend with the transnational dimension in the struggle against corruption. Based on an interdisciplinary framework that combines corruption studies, science and technology studies and social movement studies, BIT-ACT will use the constructivist grounded theory method to analyze a combination of textual and visual data in a comparative and transnational research design including nine countries – Algeria, Bangladesh, Brazil, Estonia, India, Italy, Spain, Ukraine, Uruguay. BIT-ACT will be groundbreaking in three ways. At the theoretical level, it will expand the debate on anti-corruption providing grounded concepts and models to explain ACTs; at the empirical level, it will advance knowledge on how the usage of ACTs is changing the relationship between citizens and democratic institutions; at the methodological level, it will innovate in the use of grounded theory assessing a new standard for cross-national comparative grounded theory. Finally, BIT-ACT will produce sound and useful knowledge for the stakeholders involved in the fight against corruption worldwide by suggesting how to best employ ICTs from the bottom-up.
Summary
Corruption is a global challenge that affects the lives of millions of citizens. In the past decade, Information and Communication Technologies (ICTs) have become indispensable tools in the fight to reduce corruption, especially when employed from the bottom-up by civil society organizations. While pioneering initiatives in this direction have flourished, to date we only have unsystematic and descriptive evidence regarding how they work and the associated consequences. With the objective of significantly advancing knowledge on this topic, BIT-ACT will open a new line of inquiry by investigating what I call anti-corruption technologies (ACTs) to: (1) assess how civil society organizations engage with ACTs to counter corruption, (2) appraise how ACTs enable intersections between bottom-up and top-down efforts against corruption, and (3) evaluate how ACTs blend with the transnational dimension in the struggle against corruption. Based on an interdisciplinary framework that combines corruption studies, science and technology studies and social movement studies, BIT-ACT will use the constructivist grounded theory method to analyze a combination of textual and visual data in a comparative and transnational research design including nine countries – Algeria, Bangladesh, Brazil, Estonia, India, Italy, Spain, Ukraine, Uruguay. BIT-ACT will be groundbreaking in three ways. At the theoretical level, it will expand the debate on anti-corruption providing grounded concepts and models to explain ACTs; at the empirical level, it will advance knowledge on how the usage of ACTs is changing the relationship between citizens and democratic institutions; at the methodological level, it will innovate in the use of grounded theory assessing a new standard for cross-national comparative grounded theory. Finally, BIT-ACT will produce sound and useful knowledge for the stakeholders involved in the fight against corruption worldwide by suggesting how to best employ ICTs from the bottom-up.
Max ERC Funding
1 489 115 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym BONDS
Project Bilayered ON-Demand Scaffolds: On-Demand Delivery from induced Pluripotent Stem Cell Derived Scaffolds for Diabetic Foot Ulcers
Researcher (PI) Cathal KEARNEY
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Summary
This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Max ERC Funding
1 372 135 €
Duration
Start date: 2017-10-01, End date: 2022-09-30