Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ADAPT
Project Origins and factors governing adaptation: Insights from experimental evolution and population genomic data
Researcher (PI) Thomas, Martin Jean Bataillon
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2012-StG_20111109
Summary "I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Summary
"I propose a systematic study of the type of genetic variation enabling adaptation and factors that limit rates of adaptation in natural populations. New methods will be developed for analysing data from experimental evolution and population genomics. The methods will be applied to state of the art data from both fields. Adaptation is generated by natural selection sieving through heritable variation. Examples of adaptation are available from the fossil record and from extant populations. Genomic studies have supplied many instances of genomic regions exhibiting footprint of natural selection favouring new variants. Despite ample proof that adaptation happens, we know little about beneficial mutations– the raw stuff enabling adaptation. Is adaptation mediated by genetic variation pre-existing in the population, or by variation supplied de novo through mutations? We know even less about what factors limit rates of adaptation. Answers to these questions are crucial for Evolutionary Biology, but also for believable quantifications of the evolutionary potential of populations. Population genetic theory makes predictions and allows inference from the patterns of polymorphism within species and divergence between species. Yet models specifying the fitness effects of mutations are often missing. Fitness landscape models will be mobilized to fill this gap and develop methods for inferring the distribution of fitness effects and factors governing rates of adaptation. Insights into the processes underlying adaptation will thus be gained from experimental evolution and population genomics data. The applicability of insights gained from experimental evolution to comprehend adaptation in nature will be scrutinized. We will unite two very different approaches for studying adaptation. The project will boost our understanding of how selection shapes genomes and open the way for further quantitative tests of theories of adaptation."
Max ERC Funding
1 159 857 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym ANTS
Project Attine ANT SymbiomeS
Researcher (PI) Jacobus Jan Boomsma
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS8, ERC-2012-ADG_20120314
Summary "The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Summary
"The attine fungus-growing ants are prime models for understanding phenotypic adaptations in social evolution and symbiosis. The mutualism has many hallmarks of advanced cooperation in its mating system commitments and functional complementarity between multiple symbiont partners, but potential conflicts between sexes and castes over reproductive priorities, and between hosts and symbionts over symbiont mixing have also been documented. With collaborators at BGI-Shenzhen and the Smithsonian Institution my group has obtained six reference genomes representing all genus-level branches of the higher attine ants and a lower attine outgroup. With collaborators in Denmark and Australia we have pioneered proteomic approaches to understand the preservation of sperm viability in spite of sperm competition and the enzymatic decomposition of plant substrates that the ants use to make their fungus gardens grow.
Here, I propose an integrated study focusing on four major areas of attine ant biology that are particularly inviting for in depth molecular approaches: 1. The protein-level networks that secure life-time (up to 20 years) sperm storage in specialized ant-queen organs and the genetic mechanisms that shape and adjust these “sexual symbiome” networks. 2. The ant-fungal symbiome, i.e. the dynamics of fungal enzyme production for plant substrate degradation and the redistribution of these enzymes in fungus gardens through fecal deposition after they are ingested but not digested by the ants. 3. The microbial symbiome of ant guts and other tissues with obligate bacterial mutualists, of which we have identified some and will characterize a wider collection across the different branches of the attine ant phylogeny. 4. The genome-wide frequency of genomic imprinting and the significance of these imprints for the expression of caste phenotypes and the regulation of potential reproductive conflicts."
Max ERC Funding
2 290 102 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym ARCHADAPT
Project The architecture of adaptation to novel environments
Researcher (PI) Christian Werner Schlötterer
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Summary
One of the central goals in evolutionary biology is to understand adaptation. Experimental evolution represents a highly promising approach to study adaptation. In this proposal, a freshly collected D. simulans population will be allowed to adapt to laboratory conditions under two different temperature regimes: hot (27°C) and cold (18°C). The trajectories of adaptation to these novel environments will be monitored on three levels: 1) genomic, 2) transcriptomic, 3) phenotypic. Allele frequency changes during the experiment will be measured by next generation sequencing of DNA pools (Pool-Seq) to identify targets of selection. RNA-Seq will be used to trace adaptation on the transcriptomic level during three developmental stages. Eight different phenotypes will be scored to measure the phenotypic consequences of adaptation. Combining the adaptive trajectories on these three levels will provide a picture of adaptation for a multicellular, outcrossing organism that is far more detailed than any previous results.
Furthermore, the proposal addresses the question of how adaptation on these three levels is reversible if the environment reverts to ancestral conditions. The third aspect of adaptation covered in the proposal is the question of repeatability of adaptation. Again, this question will be addressed on the three levels: genomic, transcriptomic and phenotypic. Using replicates with different degrees of genetic similarity, as well as closely related species, we will test how similar the adaptive response is.
This large-scale study will provide new insights into the importance of standing variation for the adaptation to novel environments. Hence, apart from providing significant evolutionary insights on the trajectories of adaptation, the results we will obtain will have important implications for conservation genetics and commercial breeding.
Max ERC Funding
2 452 084 €
Duration
Start date: 2012-07-01, End date: 2018-06-30
Project acronym ArtHep
Project Hepatocytes-Like Microreactors for Liver Tissue Engineering
Researcher (PI) Brigitte STADLER
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Summary
The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Max ERC Funding
1 992 289 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym ATOMICAR
Project ATOMic Insight Cavity Array Reactor
Researcher (PI) Peter Christian Kjærgaard VESBORG
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Summary
The goal of ATOMICAR is to achieve the ultimate sensitivity limit in heterogeneous catalysis:
Quantitative measurement of chemical turnover on a single catalytic nanoparticle.
Most heterogeneous catalysis occurs on metal nanoparticle in the size range of 3 nm - 10 nm. Model studies have established that there is often a strong coupling between nanoparticle size & shape - and catalytic activity. The strong structure-activity coupling renders it probable that “super-active” nanoparticles exist. However, since there is no way to measure catalytic activity of less than ca 1 million nanoparticles at a time, any super-activity will always be hidden by “ensemble smearing” since one million nanoparticles of exactly identical size and shape cannot be made. The state-of-the-art in catalysis benchmarking is microfabricated flow reactors with mass-spectrometric detection, but the sensitivity of this approach cannot be incrementally improved by six orders of magnitude. This calls for a new measurement paradigm where the activity of a single nanoparticle can be benchmarked – the ultimate limit for catalytic measurement.
A tiny batch reactor is the solution, but there are three key problems: How to seal it; how to track catalytic turnover inside it; and how to see the nanoparticle inside it? Graphene solves all three problems: A microfabricated cavity with a thin SixNy bottom window, a single catalytic nanoparticle inside, and a graphene seal forms a gas tight batch reactor since graphene has zero gas permeability. Catalysis is then tracked as an internal pressure change via the stress & deflection of the graphene seal. Crucially, the electron-transparency of graphene and SixNy enables subsequent transmission electron microscope access with atomic resolution so that active nanoparticles can be studied in full detail.
ATOMICAR will re-define the experimental limits of catalyst benchmarking and lift the field of basic catalysis research into the single-nanoparticle age.
Max ERC Funding
1 496 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AutoRecon
Project Molecular mechanisms of autophagosome formation during selective autophagy
Researcher (PI) Sascha Martens
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), LS3, ERC-2014-CoG
Summary I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Summary
I propose to study how eukaryotic cells generate autophagosomes, organelles bounded by a double membrane. These are formed during autophagy and mediate the degradation of cytoplasmic substances within the lysosomal compartment. Autophagy thereby protects the organism from pathological conditions such as neurodegeneration, cancer and infections. Many core factors required for autophagosome formation have been identified but the order in which they act and their mode of action is still unclear. We will use a combination of biochemical and cell biological approaches to elucidate the choreography and mechanism of these core factors. In particular, we will focus on selective autophagy and determine how the autophagic machinery generates an autophagosome that selectively contains the cargo.
To this end we will focus on the cytoplasm-to-vacuole-targeting pathway in S. cerevisiae that mediates the constitutive delivery of the prApe1 enzyme into the vacuole. We will use cargo mimetics or prApe1 complexes in combination with purified autophagy proteins and vesicles to reconstitute the process and so determine which factors are both necessary and sufficient for autophagosome formation, as well as elucidating their mechanism of action.
In parallel we will study selective autophagosome formation in human cells. This will reveal common principles and special adaptations. In particular, we will use cell lysates from genome-edited cells in combination with purified autophagy proteins to reconstitute selective autophagosome formation around ubiquitin-positive cargo material. The insights and hypotheses obtained from these reconstituted systems will be validated using cell biological approaches.
Taken together, our experiments will allow us to delineate the major steps of autophagosome formation during selective autophagy. Our results will yield detailed insights into how cells form and shape organelles in a de novo manner, which is major question in cell- and developmental biology.
Max ERC Funding
1 999 640 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym AuxinER
Project Mechanisms of Auxin-dependent Signaling in the Endoplasmic Reticulum
Researcher (PI) Jürgen Kleine-Vehn
Host Institution (HI) UNIVERSITAET FUER BODENKULTUR WIEN
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary The phytohormone auxin has profound importance for plant development. The extracellular AUXIN BINDING PROTEIN1 (ABP1) and the nuclear AUXIN F-BOX PROTEINs (TIR1/AFBs) auxin receptors perceive fast, non-genomic and slow, genomic auxin responses, respectively. Despite the fact that ABP1 mainly localizes to the endoplasmic reticulum (ER), until now it has been proposed to be active only in the extracellular matrix (reviewed in Sauer and Kleine-Vehn, 2011). Just recently, ABP1 function was also linked to genomic responses, modulating TIR1/AFB-dependent processes (Tromas et al., 2013). Intriguingly, the genomic effect of ABP1 appears to be at least partially independent of the endogenous auxin indole 3-acetic acid (IAA) (Paque et al., 2014).
In this proposal my main research objective is to unravel the importance of the ER for genomic auxin responses. The PIN-LIKES (PILS) putative carriers for auxinic compounds also localize to the ER and determine the cellular sensitivity to auxin. PILS5 gain-of-function reduces canonical auxin signaling (Barbez et al., 2012) and phenocopies abp1 knock down lines (Barbez et al., 2012, Paque et al., 2014). Accordingly, a PILS-dependent substrate could be a negative regulator of ABP1 function in the ER. Based on our unpublished data, an IAA metabolite could play a role in ABP1-dependent processes in the ER, possibly providing feedback on the canonical nuclear IAA-signaling.
I hypothesize that the genomic auxin response may be an integration of auxin- and auxin-metabolite-dependent nuclear and ER localized signaling, respectively. This proposed project aims to characterize a novel auxin-signaling paradigm in plants. We will employ state of the art interdisciplinary (biochemical, biophysical, computational modeling, molecular, and genetic) methods to assess the projected research. The identification of the proposed auxin conjugate-dependent signal could have far reaching plant developmental and biotechnological importance.
Summary
The phytohormone auxin has profound importance for plant development. The extracellular AUXIN BINDING PROTEIN1 (ABP1) and the nuclear AUXIN F-BOX PROTEINs (TIR1/AFBs) auxin receptors perceive fast, non-genomic and slow, genomic auxin responses, respectively. Despite the fact that ABP1 mainly localizes to the endoplasmic reticulum (ER), until now it has been proposed to be active only in the extracellular matrix (reviewed in Sauer and Kleine-Vehn, 2011). Just recently, ABP1 function was also linked to genomic responses, modulating TIR1/AFB-dependent processes (Tromas et al., 2013). Intriguingly, the genomic effect of ABP1 appears to be at least partially independent of the endogenous auxin indole 3-acetic acid (IAA) (Paque et al., 2014).
In this proposal my main research objective is to unravel the importance of the ER for genomic auxin responses. The PIN-LIKES (PILS) putative carriers for auxinic compounds also localize to the ER and determine the cellular sensitivity to auxin. PILS5 gain-of-function reduces canonical auxin signaling (Barbez et al., 2012) and phenocopies abp1 knock down lines (Barbez et al., 2012, Paque et al., 2014). Accordingly, a PILS-dependent substrate could be a negative regulator of ABP1 function in the ER. Based on our unpublished data, an IAA metabolite could play a role in ABP1-dependent processes in the ER, possibly providing feedback on the canonical nuclear IAA-signaling.
I hypothesize that the genomic auxin response may be an integration of auxin- and auxin-metabolite-dependent nuclear and ER localized signaling, respectively. This proposed project aims to characterize a novel auxin-signaling paradigm in plants. We will employ state of the art interdisciplinary (biochemical, biophysical, computational modeling, molecular, and genetic) methods to assess the projected research. The identification of the proposed auxin conjugate-dependent signal could have far reaching plant developmental and biotechnological importance.
Max ERC Funding
1 441 125 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym BIOMEMOS
Project Higher order structure and function of biomembranes
Researcher (PI) Poul Nissen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Summary
The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Max ERC Funding
2 444 180 €
Duration
Start date: 2010-04-01, End date: 2015-03-31