Project acronym ATM-GTP
Project Atmospheric Gas-to-Particle conversion
Researcher (PI) Markku KULMALA
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2016-ADG
Summary Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Summary
Atmospheric Gas-to-Particle conversion (ATM-GTP) is a 5-year project focusing on one of the most critical atmospheric processes relevant to global climate and air quality: the first steps of atmospheric aerosol particle formation and growth. The project will concentrate on the currently lacking environmentally-specific knowledge about the interacting, non-linear, physical and chemical atmospheric processes associated with nano-scale gas-to-particle conversion (GTP). The main scientific objective of ATM-GTP is to create a deep understanding on atmospheric GTP taking place at the sub-5 nm size range, particularly in heavily-polluted Chinese mega cities like Beijing and in pristine environments like Siberia and Nordic high-latitude regions. We also aim to find out how nano-GTM is associated with air quality-climate interactions and feedbacks. We are interested in quantifying the effect of nano-GTP on the COBACC (Continental Biosphere-Aerosol-Cloud-Climate) feedback loop that is important in Arctic and boreal regions. Our approach enables to point out the effective reduction mechanisms of the secondary air pollution by a factor of 5-10 and to make reliable estimates of the global and regional aerosol loads, including anthropogenic and biogenic contributions to these loads. We can estimate the future role of Northern Hemispheric biosphere in reducing the global radiative forcing via the quantified feedbacks. The project is carried out by the world-leading scientist in atmospheric aerosol science, being also one of the founders of terrestrial ecosystem meteorology, together with his research team. The project uses novel infrastructures including SMEAR (Stations Measuring Ecosystem Atmospheric Relations) stations, related modelling platforms and regional data from Russia and China. The work will be carried out in synergy with several national, Nordic and EU research-innovation projects: Finnish Center of Excellence-ATM, Nordic CoE-CRAICC and EU-FP7-BACCHUS.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym ATMNUCLE
Project Atmospheric nucleation: from molecular to global scale
Researcher (PI) Markku Tapio Kulmala
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2008-AdG
Summary Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Summary
Atmospheric aerosol particles and trace gases affect the quality of our life in many ways (e.g. health effects, changes in climate and hydrological cycle). Trace gases and atmospheric aerosols are tightly connected via physical, chemical, meteorological and biological processes occurring in the atmosphere and at the atmosphere-biosphere interface. One important phenomenon is atmospheric aerosol formation, which involves the production of nanometer-size particles by nucleation and their growth to detectable sizes. The main scientific objectives of this project are 1) to quantify the mechanisms responsible for atmospheric new particle formation and 2) to find out how important this process is for the behaviour of the global aerosol system and, ultimately, for the whole climate system. Our scientific plan is designed as a research chain that aims to advance our understanding of climate and air quality through a series of connected activities. We start from molecular simulations and laboratory measurements to understand nucleation and aerosol thermodynamic processes. We measure nanoparticles and atmospheric clusters at 15-20 sites all around the world using state of the art instrumentation and study feedbacks and interactions between climate and biosphere. With these atmospheric boundary layer studies we form a link to regional-scale processes and further to global-scale phenomena. In order to be able to simulate global climate and air quality, the most recent progress on this chain of processes must be compiled, integrated and implemented in Climate Change and Air Quality numerical models via novel parameterizations.
Max ERC Funding
2 000 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym CALLIOPE
Project voCAL articuLations Of Parliamentary Identity and Empire
Researcher (PI) Josephine HOEGAERTS
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Summary
What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Max ERC Funding
1 499 905 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym Cat-In-hAT
Project Catastrophic Interactions of Binary Stars and the Associated Transients
Researcher (PI) Ondrej PEJCHA
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Starting Grant (StG), PE9, ERC-2018-STG
Summary "One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Summary
"One of the crucial formation channels of compact object binaries, including sources of gravitational waves, critically depends on catastrophic binary interactions accompanied by the loss of mass, angular momentum, and energy (""common envelope"" evolution - CEE). Despite its importance, CEE is perhaps the least understood major phase of binary star evolution and progress in this area is urgently needed to interpret observations from the new facilities (gravitational wave detectors, time-domain surveys).
Recently, the dynamical phase of the CEE has been associated with a class of transient brightenings exhibiting slow expansion velocities and copious formation of dust and molecules (red transients - RT). A number of RT features, especially the long timescale of mass loss, challenge the existing CEE paradigm.
Motivated by RT, I will use a new variant of magnetohydrodynamics to comprehensively examine the 3D evolution of CEE from the moment when the mass loss commences to the remnant phase. I expect to resolve the long timescales observed in RT, characterize binary stability in 3D with detailed microphysics, illuminate the fundamental problem of how is orbital energy used to unbind the common envelope in a regime that was inaccessible before, and break new ground on the amplification of magnetic fields during CEE.
I will establish RT as an entirely new probe of the CEE physics by comparing my detailed theoretical predictions of light curves from different viewing angles, spectra, line profiles, and polarimetric signatures with observations of RT. I will accomplish this by coupling multi-dimensional moving mesh hydrodynamics with radiation, dust formation, and chemical reactions. Finally, I will examine the physical processes in RT remnants on timescales of years to centuries after the outburst to connect RT with the proposed merger products and to identify them in time-domain surveys.
"
Max ERC Funding
1 243 219 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym CGCglasmaQGP
Project The nonlinear high energy regime of Quantum Chromodynamics
Researcher (PI) Tuomas Veli Valtteri Lappi
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary "This proposal concentrates on Quantum Chromodynamics (QCD) in its least well understood "final frontier": the high energy limit. The aim is to treat the formation of quark gluon plasma in relativistic nuclear collisions together with other high energy processes in a consistent QCD framework. This project is topical now in order to fully understand the results from the maturing LHC heavy ion program. The high energy regime is characterized by a high density of gluons, whose nonlinear interactions are beyond the reach of simple perturbative calculations. High energy particles also propagate nearly on the light cone, unaccessible to Euclidean lattice calculations. The nonlinear interactions at high density lead to the phenomenon of gluon saturation. The emergence of the "saturation scale", a semihard typical transverse momentum, enables a weak coupling expansion around a nonperturbatively large color field. This project aims to make progress both in collider phenomenology and in more conceptual aspects of nonabelian gauge field dynamics at high energy density:
1. Significant advances towards higher order accuracy will be made in cross section calculations for processes where a dilute probe collides with the strong color field of a high energy nucleus.
2. The quantum fluctuations around the strong color fields in the initial stages of a relativistic heavy ion collision will be analyzed with a new numerical method based on an explicit linearization of the equations of motion, maintaining a well defined weak coupling limit.
3. Initial conditions for fluid dynamical descriptions of the quark gluon plasma phase in heavy ion collisions will be obtained from a constrained QCD calculation.
We propose to achieve these goals with modern analytical and numerical methods, on which the P.I. is a leading expert. This project would represent a leap in the field towards better quantitative first principles understanding of QCD in a new kinematical domain."
Summary
"This proposal concentrates on Quantum Chromodynamics (QCD) in its least well understood "final frontier": the high energy limit. The aim is to treat the formation of quark gluon plasma in relativistic nuclear collisions together with other high energy processes in a consistent QCD framework. This project is topical now in order to fully understand the results from the maturing LHC heavy ion program. The high energy regime is characterized by a high density of gluons, whose nonlinear interactions are beyond the reach of simple perturbative calculations. High energy particles also propagate nearly on the light cone, unaccessible to Euclidean lattice calculations. The nonlinear interactions at high density lead to the phenomenon of gluon saturation. The emergence of the "saturation scale", a semihard typical transverse momentum, enables a weak coupling expansion around a nonperturbatively large color field. This project aims to make progress both in collider phenomenology and in more conceptual aspects of nonabelian gauge field dynamics at high energy density:
1. Significant advances towards higher order accuracy will be made in cross section calculations for processes where a dilute probe collides with the strong color field of a high energy nucleus.
2. The quantum fluctuations around the strong color fields in the initial stages of a relativistic heavy ion collision will be analyzed with a new numerical method based on an explicit linearization of the equations of motion, maintaining a well defined weak coupling limit.
3. Initial conditions for fluid dynamical descriptions of the quark gluon plasma phase in heavy ion collisions will be obtained from a constrained QCD calculation.
We propose to achieve these goals with modern analytical and numerical methods, on which the P.I. is a leading expert. This project would represent a leap in the field towards better quantitative first principles understanding of QCD in a new kinematical domain."
Max ERC Funding
1 935 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym COALA
Project Comprehensive molecular characterization of secondary organic aerosol formation in the atmosphere
Researcher (PI) Mikael Ehn
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Summary
Key words: Atmospheric secondary organic aerosol, chemical ionization mass spectrometry
The increase in anthropogenic atmospheric aerosol since the industrial revolution has considerably mitigated the global warming caused by concurrent anthropogenic greenhouse gas emissions. However, the uncertainty in the magnitude of the aerosol climate influence is larger than that of any other man-made climate-perturbing component.
Secondary organic aerosol (SOA) is one of the most prominent aerosol types, yet a detailed mechanistic understanding of its formation process is still lacking. We recently presented the ground-breaking discovery of a new important compound group in our publication in Nature: a prompt and abundant source of extremely low-volatility organic compounds (ELVOC), able to explain the majority of the SOA formed from important atmospheric precursors.
Quantifying the atmospheric role of ELVOCs requires further focused studies and I will start a research group with the main task of providing a comprehensive, quantitative and mechanistic understanding of the formation and evolution of SOA. Our recent discovery of an important missing component of SOA highlights the need for comprehensive chemical characterization of both the gas and particle phase composition.
This project will use state-of-the-art chemical ionization mass spectrometry (CIMS), which was critical also in the detection of the ELVOCs. We will extend the applicability of CIMS techniques and conduct innovative experiments in both laboratory and field settings using a novel suite of instrumentation to achieve the goals set out in this project.
We will provide unprecedented insights into the compounds and mechanisms producing SOA, helping to decrease the uncertainties in assessing the magnitude of aerosol effects on climate. Anthropogenic SOA contributes strongly to air quality deterioration as well and therefore our results will find direct applicability also in this extremely important field.
Max ERC Funding
1 892 221 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym CODE
Project Condensation in designed systems
Researcher (PI) Päivi Elina Törmä
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Summary
"Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Max ERC Funding
1 559 608 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym CRAACE
Project Continuity and Rupture in Central European Art and Architecture, 1918-1939
Researcher (PI) Matthew RAMPLEY
Host Institution (HI) Masarykova univerzita
Call Details Advanced Grant (AdG), SH5, ERC-2017-ADG
Summary When new political elites and social structures emerge out of a historical rupture, how are art and architecture affected? In 1918 the political map of central Europe was redrawn as a result of the collapse of Austria-Hungary, marking a new era for the region. Through comparative analysis of the visual arts in 3 states built on the ruins of the Habsburg Empire (Austria, Hungary and [former] Czechoslovakia), this project examines how such political discontinuity affected art and architecture between 1918 and 1939. The project is organised into 4 themes, each resulting in a monograph:
1. Vernacular modernisms, nostalgia and the avant-garde
2. Presenting the state: world fairs and exhibitionary cultures
3. Piety, reaction and renewal
4. Contested histories: monuments, memory and representations of the historical past
It is the first systematic and comprehensive trans-national study of this type, based on the claim that the successor states to Austria-Hungary belonged to a common cultural space informed by the shared memory of the long years of Habsburg society and culture. The project focuses on the contradictory ways that visual arts of artists and architects in central Europe adapted to and tried to shape new socio-political circumstances in the light of the past. The project thus examines the long shadow of the Habsburg Empire over the art and culture of the twentieth century.
The project also considers the impact of the political and ideological imperatives of the three successor states on the visual arts; how did governments treat the past? Did they encourage a sense of historical caesura or look to the past for legitimation? How did artists and architects respond to such new impulses? In answering these questions the project analyses the conflicts between avant-gardes and more conservative artistic movements; the role of the visual arts in interwar memory politics; the place of art in the nexus of religion, national and state identity.
Summary
When new political elites and social structures emerge out of a historical rupture, how are art and architecture affected? In 1918 the political map of central Europe was redrawn as a result of the collapse of Austria-Hungary, marking a new era for the region. Through comparative analysis of the visual arts in 3 states built on the ruins of the Habsburg Empire (Austria, Hungary and [former] Czechoslovakia), this project examines how such political discontinuity affected art and architecture between 1918 and 1939. The project is organised into 4 themes, each resulting in a monograph:
1. Vernacular modernisms, nostalgia and the avant-garde
2. Presenting the state: world fairs and exhibitionary cultures
3. Piety, reaction and renewal
4. Contested histories: monuments, memory and representations of the historical past
It is the first systematic and comprehensive trans-national study of this type, based on the claim that the successor states to Austria-Hungary belonged to a common cultural space informed by the shared memory of the long years of Habsburg society and culture. The project focuses on the contradictory ways that visual arts of artists and architects in central Europe adapted to and tried to shape new socio-political circumstances in the light of the past. The project thus examines the long shadow of the Habsburg Empire over the art and culture of the twentieth century.
The project also considers the impact of the political and ideological imperatives of the three successor states on the visual arts; how did governments treat the past? Did they encourage a sense of historical caesura or look to the past for legitimation? How did artists and architects respond to such new impulses? In answering these questions the project analyses the conflicts between avant-gardes and more conservative artistic movements; the role of the visual arts in interwar memory politics; the place of art in the nexus of religion, national and state identity.
Max ERC Funding
2 468 359 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym CROSSLOCATIONS
Project Crosslocations in the Mediterranean: rethinking the socio-cultural dynamics of relative positioning
Researcher (PI) Sarah Francesca Green
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), SH5, ERC-2015-AdG
Summary The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Summary
The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Max ERC Funding
2 433 234 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym DAMOCLES
Project Simulating Non-Equilibrium Dynamics of Atmospheric Multicomponent Clusters
Researcher (PI) Hanna Vehkamäki
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary Atmospheric aerosol particles play a key role in regulating the climate, and particulate matter is responsible for most of the 7 million deaths per year attributed to air pollution. Lack of understanding of aerosol processes, especially the formation of ice crystals and secondary particles from condensable trace gases, hampers the development of air quality modelling, and remains one of the major uncertainties in predicting climate.
The purpose of this project is to achieve a comprehensive understanding of atmospheric nanocluster and ice crystal formation based on fundamental physico-chemical principles. We will use a wide palette of theoretical methods including quantum chemistry, reaction kinetics, continuum solvent models, molecular dynamics, Monte Carlo simulations, Markov chain Monte Carlo methods, computational fluid dynamics, cluster kinetic and thermodynamic models. We will study non-equilibrium effects and kinetic barriers in atmospheric clustering, and use these to build cluster distribution models with genuine predictive capacity.
Chemical ionization mass spectrometers can, unlike any other instruments, detect the elemental composition of many of the smallest clusters at ambient low concentrations. However, the charging process and the environment inside the instrument change the composition of the clusters in hitherto unquantifiable ways. We will solve this problem by building an accurate model for the fate of clusters inside mass spectrometers, which will vastly improve the amount and quality of information that can be extracted from mass spectrometric measurements in atmospheric science and elsewhere.
DAMOCLES will produce reliable and consistent models for secondary aerosol and ice particle formation and growth. This will lead to improved predictions of aerosol concentrations and size distributions, leading to improved air quality forecasting, more accurate estimates of aerosol indirect climate forcing and other aerosol-cloud-climate interactions.
Summary
Atmospheric aerosol particles play a key role in regulating the climate, and particulate matter is responsible for most of the 7 million deaths per year attributed to air pollution. Lack of understanding of aerosol processes, especially the formation of ice crystals and secondary particles from condensable trace gases, hampers the development of air quality modelling, and remains one of the major uncertainties in predicting climate.
The purpose of this project is to achieve a comprehensive understanding of atmospheric nanocluster and ice crystal formation based on fundamental physico-chemical principles. We will use a wide palette of theoretical methods including quantum chemistry, reaction kinetics, continuum solvent models, molecular dynamics, Monte Carlo simulations, Markov chain Monte Carlo methods, computational fluid dynamics, cluster kinetic and thermodynamic models. We will study non-equilibrium effects and kinetic barriers in atmospheric clustering, and use these to build cluster distribution models with genuine predictive capacity.
Chemical ionization mass spectrometers can, unlike any other instruments, detect the elemental composition of many of the smallest clusters at ambient low concentrations. However, the charging process and the environment inside the instrument change the composition of the clusters in hitherto unquantifiable ways. We will solve this problem by building an accurate model for the fate of clusters inside mass spectrometers, which will vastly improve the amount and quality of information that can be extracted from mass spectrometric measurements in atmospheric science and elsewhere.
DAMOCLES will produce reliable and consistent models for secondary aerosol and ice particle formation and growth. This will lead to improved predictions of aerosol concentrations and size distributions, leading to improved air quality forecasting, more accurate estimates of aerosol indirect climate forcing and other aerosol-cloud-climate interactions.
Max ERC Funding
2 390 450 €
Duration
Start date: 2016-06-01, End date: 2021-05-31