Project acronym 2DNANOCAPS
Project Next Generation of 2D-Nanomaterials: Enabling Supercapacitor Development
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Summary
Climate change and the decreasing availability of fossil fuels require society to move towards sustainable and renewable resources. 2DNanoCaps will focus on electrochemical energy storage, specifically supercapacitors. In terms of performance supercapacitors fill up the gap between batteries and the classical capacitors. Whereas batteries possess a high energy density but low power density, supercapacitors possess high power density but low energy density. Efforts are currently dedicated to move supercapacitors towards high energy density and high power density performance. Improvements have been achieved in the last few years due to the use of new electrode nanomaterials and the design of new hybrid faradic/capacitive systems. We recognize, however, that we are reaching a newer limit beyond which we will only see small incremental improvements. The main reason for this being the intrinsic difficulty in handling and processing materials at the nano-scale and the lack of communication across different scientific disciplines. I plan to use a multidisciplinary approach, where novel nanomaterials, existing knowledge on nano-scale processing and established expertise in device fabrication and testing will be brought together to focus on creating more efficient supercapacitor technologies. 2DNanoCaps will exploit liquid phase exfoliated two-dimensional nanomaterials such as transition metal oxides, layered metal chalcogenides and graphene as electrode materials. Electrodes will be ultra-thin (capacitance and thickness of the electrodes are inversely proportional), conductive, with high dielectric constants. Intercalation of ions between the assembled 2D flakes will be also achievable, providing pseudo-capacitance. The research here proposed will be initially based on fundamental laboratory studies, recognising that this holds the key to achieving step-change in supercapacitors, but also includes scaling-up and hybridisation as final objectives.
Max ERC Funding
1 501 296 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym AAATSI
Project Advanced Antenna Architecture for THZ Sensing Instruments
Researcher (PI) Andrea Neto
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Summary
The Tera-Hertz portion of the spectrum presents unique potentials for advanced applications. Currently the THz spectrum is revealing the mechanisms at the origin of our universe and provides the means to monitor the health of our planet via satellite based sensing of critical gases. Potentially time domain sensing of the THz spectrum will be the ideal tool for a vast variety of medical and security applications.
Presently, systems in the THz regime are extremely expensive and consequently the THz spectrum is still the domain of only niche (expensive) scientific applications. The main problems are the lack of power and sensitivity. The wide unused THz spectral bandwidth is, herself, the only widely available resource that in the future can compensate for these problems. But, so far, when scientists try to really use the bandwidth, they run into an insurmountable physical limit: antenna dispersion. Antenna dispersion modifies the signal’s spectrum in a wavelength dependent manner in all types of radiation, but is particularly deleterious to THz signals because the spectrum is too wide and with foreseeable technology it cannot be digitized.
The goal of this proposal is to introduce break-through antenna technology that will eliminate the dispersion bottle neck and revolutionize Time Domain sensing and Spectroscopic Space Science. Achieving these goals the project will pole vault THz imaging technology into the 21-th century and develop critically important enabling technologies which will satisfy the electrical engineering needs of the next 30 years and in the long run will enable multi Tera-bit wireless communications.
In order to achieve these goals, I will first build upon two major breakthrough radiation mechanisms that I pioneered: Leaky Lenses and Connected Arrays. Eventually, ultra wide band imaging arrays constituted by thousands of components will be designed on the bases of the new theoretical findings and demonstrated.
Max ERC Funding
1 499 487 €
Duration
Start date: 2011-11-01, End date: 2017-10-31
Project acronym AFFIRM
Project Analysis of Biofilm Mediated Fouling of Nanofiltration Membranes
Researcher (PI) Eoin Casey
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary 1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Summary
1.2 billion people worldwide lack access to safe drinking water. Drinking water quality is threatened by newly emerging organic micro-pollutants (pesticides, pharmaceuticals, industrial chemicals) in source waters. Nanofiltration is a technology that is expected to play a key role in future water treatment processes due to its effectiveness in removal of micropollutants. However, the loss of membrane flux due to fouling is one of the main impediments in the development of membrane processes for use in drinking water treatment. Currently there is a wholly inadequate mechanistic understanding of the role of biofilm on the fouling of nanofiltration membranes.
Applying techniques including confocal microscopy, force spectroscopy, and infrared spectroscopy using an experimental programme informed by a technique known as scale-down together with mathematical modelling, it is confidently expected that significant advances will be gained in the mechanistic understanding of nanofiltration biofouling.
The specific objectives are 1. How is the rate of formation and extent of such biofilms influenced by the biological response to the local microenvironment? 2 Elucidate the effect of extracellular polysaccharide substances on physical properties, composition and structure of these biofilms. 3: Investigate mechanisms to enhance biofilm removal by a physical detachment process complemented by techniques that alter biofilm material properties.
A more fundamental insight into the mechanisms of nanofiltration operation will help in further development of this treatment method in future water treatment processes.
Max ERC Funding
1 468 987 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym AGGLONANOCOAT
Project The interplay between agglomeration and coating of nanoparticles in the gas phase
Researcher (PI) Jan Rudolf Van Ommen
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary This proposal aims to develop a generic synthesis approach for core-shell nanoparticles by unravelling the relevant mechanisms. Core-shell nanoparticles have high potential in heterogeneous catalysis, energy storage, and medical applications. However, on a fundamental level there is currently a poor understanding of how to produce such nanostructured particles in a controllable and scalable manner.
The main barriers to achieving this goal are understanding how nanoparticles agglomerate to loose dynamic clusters and controlling the agglomeration process in gas flows during coating, such that uniform coatings can be made. This is very challenging because of the two-way coupling between agglomeration and coating. During the coating we change the particle surfaces and thus the way the particles stick together. Correspondingly, the stickiness of particles determines how easy reactants can reach the surface.
Innovatively the project will be the first systematic study into this multi-scale phenomenon with investigations at all relevant length scales. Current synthesis approaches – mostly carried out in the liquid phase – are typically developed case by case. I will coat nanoparticles in the gas phase with atomic layer deposition (ALD): a technique from the semi-conductor industry that can deposit a wide range of materials. ALD applied to flat substrates offers excellent control over layer thickness. I will investigate the modification of single particle surfaces, particle-particle interaction, the structure of agglomerates, and the flow behaviour of large number of agglomerates. To this end, I will apply a multidisciplinary approach, combining disciplines as physical chemistry, fluid dynamics, and reaction engineering.
Summary
This proposal aims to develop a generic synthesis approach for core-shell nanoparticles by unravelling the relevant mechanisms. Core-shell nanoparticles have high potential in heterogeneous catalysis, energy storage, and medical applications. However, on a fundamental level there is currently a poor understanding of how to produce such nanostructured particles in a controllable and scalable manner.
The main barriers to achieving this goal are understanding how nanoparticles agglomerate to loose dynamic clusters and controlling the agglomeration process in gas flows during coating, such that uniform coatings can be made. This is very challenging because of the two-way coupling between agglomeration and coating. During the coating we change the particle surfaces and thus the way the particles stick together. Correspondingly, the stickiness of particles determines how easy reactants can reach the surface.
Innovatively the project will be the first systematic study into this multi-scale phenomenon with investigations at all relevant length scales. Current synthesis approaches – mostly carried out in the liquid phase – are typically developed case by case. I will coat nanoparticles in the gas phase with atomic layer deposition (ALD): a technique from the semi-conductor industry that can deposit a wide range of materials. ALD applied to flat substrates offers excellent control over layer thickness. I will investigate the modification of single particle surfaces, particle-particle interaction, the structure of agglomerates, and the flow behaviour of large number of agglomerates. To this end, I will apply a multidisciplinary approach, combining disciplines as physical chemistry, fluid dynamics, and reaction engineering.
Max ERC Funding
1 409 952 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym ANAMORPHISM
Project Asymptotic and Numerical Analysis of MOdels of Resonant Physics Involving Structured Materials
Researcher (PI) Sebastien Roger Louis Guenneau
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary One already available method to expand the range of material properties is to adjust the composition of materials at the molecular level using chemistry. We would like to develop the alternative approach of homogenization which broadens the definition of a material to include artificially structured media (fluids and solids) in which the effective electromagnetic, hydrodynamic or elastic responses result from a macroscopic patterning or arrangement of two or more distinct materials. This project will explore the latter avenue in order to markedly enhance control of surface water waves and elastodynamic waves propagating within artificially structured fluids and solid materials, thereafter called acoustic metamaterials.
Pendry's perfect lens, the paradigm of electromagnetic metamaterials, is a slab of negative refractive index material that takes rays of light and causes them to converge with unprecedented resolution. This flat lens is a combination of periodically arranged resonant electric and magnetic elements. We will draw systematic analogies with resonant mechanical systems in order to achieve similar control of hydrodynamic and elastic waves. This will allow us to extend the design of metamaterials to acoustics to go beyond the scope of Snell-Descartes' laws of optics and Newton's laws of mechanics.
Acoustic metamaterials allow the construction of invisibility cloaks for non-linear surface water waves (e.g. tsunamis) propagating in structured fluids, as well as seismic waves propagating in thin structured elastic plates.
Maritime and civil engineering applications are in the protection of harbours, off-shore platforms and anti-earthquake passive systems. Acoustic cloaks for an enhanced control of pressure waves in fluids will be also designed for underwater camouflaging.
Light and sound interplay will be finally analysed in order to design controllable metamaterials with a special emphasis on undetectable microstructured fibres (acoustic wormholes).
Summary
One already available method to expand the range of material properties is to adjust the composition of materials at the molecular level using chemistry. We would like to develop the alternative approach of homogenization which broadens the definition of a material to include artificially structured media (fluids and solids) in which the effective electromagnetic, hydrodynamic or elastic responses result from a macroscopic patterning or arrangement of two or more distinct materials. This project will explore the latter avenue in order to markedly enhance control of surface water waves and elastodynamic waves propagating within artificially structured fluids and solid materials, thereafter called acoustic metamaterials.
Pendry's perfect lens, the paradigm of electromagnetic metamaterials, is a slab of negative refractive index material that takes rays of light and causes them to converge with unprecedented resolution. This flat lens is a combination of periodically arranged resonant electric and magnetic elements. We will draw systematic analogies with resonant mechanical systems in order to achieve similar control of hydrodynamic and elastic waves. This will allow us to extend the design of metamaterials to acoustics to go beyond the scope of Snell-Descartes' laws of optics and Newton's laws of mechanics.
Acoustic metamaterials allow the construction of invisibility cloaks for non-linear surface water waves (e.g. tsunamis) propagating in structured fluids, as well as seismic waves propagating in thin structured elastic plates.
Maritime and civil engineering applications are in the protection of harbours, off-shore platforms and anti-earthquake passive systems. Acoustic cloaks for an enhanced control of pressure waves in fluids will be also designed for underwater camouflaging.
Light and sound interplay will be finally analysed in order to design controllable metamaterials with a special emphasis on undetectable microstructured fibres (acoustic wormholes).
Max ERC Funding
1 280 391 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIHSNAM
Project Bio-inspired Hierarchical Super Nanomaterials
Researcher (PI) Nicola Pugno
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRENTO
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Summary
"Nanomaterials such as carbon nanotubes or graphene sheets represent the future of material science, due to their potentially exceptional mechanical properties. One great drawback of all artificial materials, however, is the decrease of strength with increasing toughness, and viceversa. This problem is not encountered in many biological nanomaterials (e.g. spider silk, bone, nacre). Other biological materials display exceptional adhesion or damping properties, and can be self-cleaning or self-healing. The “secret” of biomaterials seems to lie in “hierarchy”: several levels can often be identified (2 in nacre, up to 7 in bone and dentine), from nano- to micro-scale.
The idea of this project is to combine Nature and Nanotechnology to design hierarchical composites with tailor made characteristics, optimized with respect to both strength and toughness, as well as materials with strong adhesion/easy detachment, smart damping, self-healing/-cleaning properties or controlled energy dissipation. For example, one possible objective is to design the “world’s toughest composite material”. The potential impact and importance of these goals on materials science, the high-tech industry and ultimately the quality of human life could be considerable.
In order to tackle such a challenging design process, the PI proposes to adopt ultimate nanomechanics theoretical tools corroborated by continuum or atomistic simulations, multi-scale numerical parametric simulations and Finite Element optimization procedures, starting from characterization experiments on biological- or nano-materials, from the macroscale to the nanoscale. Results from theoretical, numerical and experimental work packages will be applied to a specific case study in an engineering field of particular interest to demonstrate importance and feasibility, e.g. an airplane wing with a considerably enhanced fatigue resistance and reduced ice-layer adhesion, leading to a 10 fold reduction in wasted fuel."
Max ERC Funding
1 004 400 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym BioWater
Project Development of new chemical imaging techniques to understand the function of water in biocompatibility, biodegradation and biofouling
Researcher (PI) Aoife Ann Gowen
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Summary
Water is the first molecule to come into contact with biomaterials in biological systems and thus essential to the processes of biodegradation, biocompatibility and biofouling. Despite this fact, little is currently known about how biomaterials interact with water. This knowledge is crucial for the development and optimisation of novel functional biomaterials for human health (e.g. biosensing devices, erodible biomaterials, drug release carriers, wound dressings). BioWater will develop near and mid infrared chemical imaging (NIR-MIR-CI) techniques to investigate the fundamental interaction between biomaterials and water in order to understand the key processes of biodegradation, biocompatibility and biofouling. This ambitious yet achievable project will focus on two major categories of biomaterials relevant to human health: extracellular collagens and synthetic biopolymers. Initially, interactions between these biomaterials and water will be investigated; subsequently interactions with more complicated matrices (e.g. protein solutions and cellular systems) will be studied. CI data will be correlated with standard surface characterization, biocompatibility and biodegradation measurements. Molecular dynamic simulations will complement this work to identify the most probable molecular structures of water at different biomaterial interfaces.
Advanced understanding of the role of water in biocompatibility, biofouling and biodegradation processes will facilitate the optimization of biomaterials tailored to specific cellular environments with a broad range of therapeutic applications (e.g. drug eluting stents, tissue engineering, wound healing). The new NIR-MIR-CI/chemometric methodologies developed in BioWater will allow for the rapid characterization and monitoring of novel biomaterials at pre-clinical stages, improving process control by overcoming the laborious and time consuming large-scale sampling methods currently required in biomaterials development.
Max ERC Funding
1 487 682 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BRIDGE
Project Biomimetic process design for tissue regeneration:
from bench to bedside via in silico modelling
Researcher (PI) Liesbet Geris
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Starting Grant (StG), PE8, ERC-2011-StG_20101014
Summary "Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Summary
"Tissue engineering (TE), the interdisciplinary field combining biomedical and engineering sciences in the search for functional man-made organ replacements, has key issues with the quantity and quality of the generated products. Protocols followed in the lab are mainly trial and error based, requiring a huge amount of manual interventions and lacking clear early time-point quality criteria to guide the process. As a result, these processes are very hard to scale up to industrial production levels. BRIDGE aims to fortify the engineering aspects of the TE field by adding a higher level of understanding and control to the manufacturing process (MP) through the use of in silico models. BRIDGE will focus on the bone TE field to provide proof of concept for its in silico approach.
The combination of the applicant's well-received published and ongoing work on a wide range of modelling tools in the bone field combined with the state-of-the-art experimental techniques present in the TE lab of the additional participant allows envisaging following innovation and impact:
1. proof-of-concept of the use of an in silico blue-print for the design and control of a robust modular TE MP;
2. model-derived optimised culture conditions for patient derived cell populations increasing modular robustness of in vitro chondrogenesis/endochondral ossification;
3. in silico identification of a limited set of in vitro biomarkers that is predictive of the in vivo outcome;
4. model-derived optimised culture conditions increasing quantity and quality of the in vivo outcome of the TE MP;
5. incorporation of congenital defects in the in silico MP design, constituting a further validation of BRIDGE’s in silico approach and a necessary step towards personalised medical care.
We believe that the systematic – and unprecedented – integration of (bone) TE and mathematical modelling, as proposed in BRIDGE, is required to come to a rationalized, engineering approach to design and control bone TE MPs."
Max ERC Funding
1 191 440 €
Duration
Start date: 2011-12-01, End date: 2016-11-30
Project acronym CAPS
Project Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design
Researcher (PI) Erin Crystal Koos
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Starting Grant (StG), PE8, ERC-2013-StG
Summary A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Summary
A wide variety of materials including coatings and adhesives, emerging materials for nanotechnology products, as well as everyday food products are processed or delivered as suspensions. The flow properties of such suspensions must be finely adjusted according to the demands of the respective processing techniques, even for the feel of cosmetics and the perception of food products is highly influenced by their rheological properties. The recently developed capillary suspensions concept has the potential to revolutionize product formulations and material design. When a small amount (less than 1%) of a second immiscible liquid is added to the continuous phase of a suspension, the rheological properties of the mixture are dramatically altered from a fluid-like to a gel-like state or from a weak to a strong gel and the strength can be tuned in a wide range covering orders of magnitude. Capillary suspensions can be used to create smart, tunable fluids, stabilize mixtures that would otherwise phase separate, significantly reduce the amount organic or polymeric additives, and the strong particle network can be used as a precursor for the manufacturing of cost-efficient porous ceramics and foams with unprecedented properties.
This project will investigate the influence of factors determining capillary suspension formation, the strength of these admixtures as a function of these aspects, and how capillary suspensions depend on external forces. Only such a fundamental understanding of the network formation in capillary suspensions on both the micro- and macroscopic scale will allow for the design of sophisticated new materials. The main objectives of this proposal are to quantify and predict the strength of these admixtures and then use this information to design a variety of new materials in very different application areas including, e.g., porous materials, water-based coatings, ultra low fat foods, and conductive films.
Max ERC Funding
1 489 618 €
Duration
Start date: 2013-08-01, End date: 2018-07-31