Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CON-HUMO
Project Control based on Human Models
Researcher (PI) Sandra Hirche
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary "CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Summary
"CON-HUMO focuses on novel concepts for automatic control based on data-driven human models and machine learning. This enables innovative control applications that are difficult if not impossible to realize using traditional control and identification methods, in particular in the challenging area of smart human-machine interaction. In order to achieve intuitive and efficient goal-oriented interaction, anticipation is key. For control selection based on prediction a dynamic model of the human interaction behavior is required, which, however, is difficult to obtain from first principles. In order to cope with the high complexity of human behavior with unknown inputs and only sparsely available training data we propose to use machine-learning techniques for statistical modeling of the dynamics. In this new field of human interaction modeling – data-driven and machine-learned – control methods with guaranteed properties do not exist. CON-HUMO addresses this niche.
Key methodological innovation and breakthrough is the merger of probabilistic learning with model-based control concepts through model confidence and prediction uncertainty. For the sake of concreteness and evaluation the focus is on one of the most challenging problem classes, namely physical human-machine interaction: Because of the physical contact between the human and the machine not only information, but also energy is exchanged posing fundamental challenges for real-time human-adaptive and safe decision making/control and requiring provable stability and performance guarantees. The developed methods are a direct enabler for societally important applications such as machine-based physical rehabilitation, mobility and manipulation aids for elderly, and collaborative human-machine production systems. With its fundamental results CON-HUMO lays the ground for the systematic control design for smart human-machine/infrastructure interaction."
Max ERC Funding
1 494 640 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DANCER
Project DAtacommunications based on NanophotoniC Resonators
Researcher (PI) John William Whelan-Curtin
Host Institution (HI) CORK INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary A key challenge for the 21st century is, therefore to provide billions of people with the means to access, move and manipulate, what has become, huge volumes of information. The environmental and economic implications becoming serious, making energy efficient data communications key to the operation of today’s society.
In this project, the Principal Investigator will develop a new framework for optical interconnects and provide a common platform that spans Fibre-to-the-home to chip-to-chip links, even as far as global on-chip interconnects. The project is based on the efficient coupling of the Photonic Crystal resonators with the outside world. These provide the ultimate confinement of light in both space and time allowing orders of magnitude improvements in performance relative to the state of the art, yet in a simpler simple system- the innovator’s dream. New versions of the key components of optical links- light sources, modulators and photo-detectors- will be realised in this new framework providing a new paradigm for energy efficient communication.
Summary
A key challenge for the 21st century is, therefore to provide billions of people with the means to access, move and manipulate, what has become, huge volumes of information. The environmental and economic implications becoming serious, making energy efficient data communications key to the operation of today’s society.
In this project, the Principal Investigator will develop a new framework for optical interconnects and provide a common platform that spans Fibre-to-the-home to chip-to-chip links, even as far as global on-chip interconnects. The project is based on the efficient coupling of the Photonic Crystal resonators with the outside world. These provide the ultimate confinement of light in both space and time allowing orders of magnitude improvements in performance relative to the state of the art, yet in a simpler simple system- the innovator’s dream. New versions of the key components of optical links- light sources, modulators and photo-detectors- will be realised in this new framework providing a new paradigm for energy efficient communication.
Max ERC Funding
1 495 450 €
Duration
Start date: 2013-12-01, End date: 2019-05-31
Project acronym DIRECTEDINFO
Project Investigating Directed Information
Researcher (PI) Haim Permuter
Host Institution (HI) BEN-GURION UNIVERSITY OF THE NEGEV
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary This research investigates a new measure that arises in information theory
called directed information. Recent advances, including our preliminary results, shows that
directed information arises in communication as the maximum rate that can be transmitted reliably
in channels with feedback. The directed information is multi-letter expression and therefore very
hard to optimize or compute.
Our plan is first of all to find an efficient methodology for optimizing the measure using the
dynamic programming framework and convex optimization tools. As an important by-product of
finding the fundamental limits is finding coding schemes that achieves the limits. Second, we
plan to find new roles for directed information in communication, especially in networks with
bi-directional communication and in data compression with causal conditions. Third, encouraged by
a preliminary work on interpretation of directed information in economics and estimation theory,
we plan to show that directed information has interpretation in additional fields such as
statistical physics. We plan to show that there is duality relation between different fields with
causal constraints. Due to the duality insights and breakthroughs in one problem will lead to new
insights in other problems. Finally, we will apply directed information as a statistical
inference of causal dependence. We will show how to estimate and use the directed information
estimator to measure causal inference between two or more process. In particular, one of the
questions we plan to answer is the influence of industrial activities (e.g., $\text{CO}_2$
volumes) on the global warming.
Our main focus will be to develop a deeper understanding of the mathematical properties of
directed information, a process that is instrumental to each problem. Due to their theoretical
proximity and their interdisciplinary nature, progress in one problem will lead to new insights
in other problems. A common set of mathematical tools developed in
Summary
This research investigates a new measure that arises in information theory
called directed information. Recent advances, including our preliminary results, shows that
directed information arises in communication as the maximum rate that can be transmitted reliably
in channels with feedback. The directed information is multi-letter expression and therefore very
hard to optimize or compute.
Our plan is first of all to find an efficient methodology for optimizing the measure using the
dynamic programming framework and convex optimization tools. As an important by-product of
finding the fundamental limits is finding coding schemes that achieves the limits. Second, we
plan to find new roles for directed information in communication, especially in networks with
bi-directional communication and in data compression with causal conditions. Third, encouraged by
a preliminary work on interpretation of directed information in economics and estimation theory,
we plan to show that directed information has interpretation in additional fields such as
statistical physics. We plan to show that there is duality relation between different fields with
causal constraints. Due to the duality insights and breakthroughs in one problem will lead to new
insights in other problems. Finally, we will apply directed information as a statistical
inference of causal dependence. We will show how to estimate and use the directed information
estimator to measure causal inference between two or more process. In particular, one of the
questions we plan to answer is the influence of industrial activities (e.g., $\text{CO}_2$
volumes) on the global warming.
Our main focus will be to develop a deeper understanding of the mathematical properties of
directed information, a process that is instrumental to each problem. Due to their theoretical
proximity and their interdisciplinary nature, progress in one problem will lead to new insights
in other problems. A common set of mathematical tools developed in
Max ERC Funding
1 224 600 €
Duration
Start date: 2013-08-01, End date: 2019-07-31
Project acronym E-MOBILE
Project Enhanced Modeling and Optimization of Batteries Incorporating Lithium-ion Elements
Researcher (PI) Mathieu Maurice Luisier
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary "Developing rechargeable batteries with larger storage capacity, higher output power, faster charge/discharge time, and longer calendar lifetime could significantly impact the economical and environmental future of the European Union. New generations of lithium-ion batteries (LIBs) based on nanostructured electrodes are perfect candidates to supply all-electrical vehicles and favor the usage of renewable energies instead of fossil fuels. Hence, the global LIB revenue is expected to expand from $11 billion in 2011 up to $50 billion in 2020. The goal of this project is therefore to provide an advanced simulation and optimization platform to design LIBs with improved performance and increase the competitiveness of Europe in this domain. The proposed computer aided design (CAD) tool must satisfy three key requirements in order to reach this ambitious objective: (i) computational efficiency, (ii) results accuracy, and (iii) automated predictability. Massively parallel computing has been identified as the enabling technology to handle the first requirement. The second one will be addressed by implementing a state-of-the-art device operation model relying on a multi-scale resolution of the battery electrodes, a detailed description of the electron and ion motions, a material parametrization derived from ab-initio quantum transport techniques, and a validation of the approach through comparisons with experimental measurements. Finally, to meet the last requirement, the operation model will be coupled to a genetic algorithm optimizer capable of automatically predicting the LIB configuration that best matches pre-defined performance targets. The resulting CAD tool will be released as an open source package so that the entire battery community can benefit from it."
Summary
"Developing rechargeable batteries with larger storage capacity, higher output power, faster charge/discharge time, and longer calendar lifetime could significantly impact the economical and environmental future of the European Union. New generations of lithium-ion batteries (LIBs) based on nanostructured electrodes are perfect candidates to supply all-electrical vehicles and favor the usage of renewable energies instead of fossil fuels. Hence, the global LIB revenue is expected to expand from $11 billion in 2011 up to $50 billion in 2020. The goal of this project is therefore to provide an advanced simulation and optimization platform to design LIBs with improved performance and increase the competitiveness of Europe in this domain. The proposed computer aided design (CAD) tool must satisfy three key requirements in order to reach this ambitious objective: (i) computational efficiency, (ii) results accuracy, and (iii) automated predictability. Massively parallel computing has been identified as the enabling technology to handle the first requirement. The second one will be addressed by implementing a state-of-the-art device operation model relying on a multi-scale resolution of the battery electrodes, a detailed description of the electron and ion motions, a material parametrization derived from ab-initio quantum transport techniques, and a validation of the approach through comparisons with experimental measurements. Finally, to meet the last requirement, the operation model will be coupled to a genetic algorithm optimizer capable of automatically predicting the LIB configuration that best matches pre-defined performance targets. The resulting CAD tool will be released as an open source package so that the entire battery community can benefit from it."
Max ERC Funding
1 492 800 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym NANOSCOPY
Project High-speed chip-based nanoscopy to discover real-time sub-cellular dynamics
Researcher (PI) Balpreet Singh Ahluwalia
Host Institution (HI) UNIVERSITETET I TROMSOE - NORGES ARKTISKE UNIVERSITET
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Summary
Optical nanoscopy has given a glimpse of the impact it may have on medical care in the future. Slow imaging speed and the complexity of the current nanoscope limits its use for living cells. The imaging speed is limited by the bulk optics that is used in present nanoscopy. In this project, I propose a paradigm-shift in the field of advanced microscopy by developing optical nanoscopy based on a photonic integrated circuit. The project will take advantage of nanotechnology to fabricate an advance waveguide-chip, while fast telecom optical devices will provide switching of light to the chip, enhancing the speed of imaging. This unconventional route will change the field of optical microscopy, as a simple chip-based system can be added to a normal microscope. In this project, I will build a waveguide-based structured-illumination microscope (W-SIM) to acquire fast images (25 Hz or better) from a living cell with an optical resolution of 50-100 nm. I will use W-SIM to discover the dynamics (opening and closing) of fenestrations (100 nm) present in the membrane of a living liver sinusoidal scavenger endothelial cell. It is believed among the Hepatology community that these fenestrations open and close dynamically, however there is no scientific evidence to support this hypothesis because of the lack of suitable tools. The successful imaging of fenestration kinetics in a live cell during this project will provide new fundamental knowledge and benefit human health with improved diagnoses and drug discovery for liver. Chip-based nanoscopy is a new research field, inherently making this a high-risk project, but the possible gains are also high. The W-SIM will be the first of its kind, which may open a new era of simple, integrated nanoscopy. The proposed multiple-disciplinary project requires a near-unique expertise in the field of laser physics, integrated optics, advanced microscopy and cell-biology that I have acquired at leading research centers on three continents.
Max ERC Funding
1 490 976 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym NetVolution
Project Evolving Internet Routing:
A Paradigm Shift to Foster Innovation
Researcher (PI) Christos-Xenofon Dimitropoulos
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary Although the Internet is a great technological achievement, more than 40 years after its creation some of its original security and reliability problems remain unsolved. The root cause of these problems is the rigidity of the Internet architecture or in other words the Internet ossification problem, i.e., the basic architectural components of the Internet are set to stone and cannot be changed. The most ossified component of the Internet architecture is the inter-domain routing system.
In this project, our goal is to address this challenge and to introduce a new Internet routing architecture that 1) enables innovation at the inter-domain level, 2) is backward-compatible with the present Internet architecture, and 3) provides concrete economic incentives for adopting it. We propose a new Internet routing paradigm based on a novel techno-economic framework, which exploits emerging technologies and meets these three goals. Our novel idea is that the combination of routing control logic outsourcing with Software Defined Networking (SDN) principles enables to innovate at the inter-domain level and therefore has the potential for a major break-through in the architecture of the Internet routing system. SDN is a rapidly emerging new computer networking architecture that makes the routing control plane of a network programmable. Based on our framework, we propose to design, build, and verify a better inter-domain routing system, which solves fundamental security, reliability, and manageability problems of the Internet architecture. Our work will be organized in four core topics 1) build a mutli-domain centralized routing control platform, 2) improve the reliability and security of the current inter-domain routing system, 3) design techniques for resolving tussles between competing network domains, 4) introduce advanced network monitoring and security techniques that intelligently correlate data from multiple domain to diagnose routing outages and attacks.
Summary
Although the Internet is a great technological achievement, more than 40 years after its creation some of its original security and reliability problems remain unsolved. The root cause of these problems is the rigidity of the Internet architecture or in other words the Internet ossification problem, i.e., the basic architectural components of the Internet are set to stone and cannot be changed. The most ossified component of the Internet architecture is the inter-domain routing system.
In this project, our goal is to address this challenge and to introduce a new Internet routing architecture that 1) enables innovation at the inter-domain level, 2) is backward-compatible with the present Internet architecture, and 3) provides concrete economic incentives for adopting it. We propose a new Internet routing paradigm based on a novel techno-economic framework, which exploits emerging technologies and meets these three goals. Our novel idea is that the combination of routing control logic outsourcing with Software Defined Networking (SDN) principles enables to innovate at the inter-domain level and therefore has the potential for a major break-through in the architecture of the Internet routing system. SDN is a rapidly emerging new computer networking architecture that makes the routing control plane of a network programmable. Based on our framework, we propose to design, build, and verify a better inter-domain routing system, which solves fundamental security, reliability, and manageability problems of the Internet architecture. Our work will be organized in four core topics 1) build a mutli-domain centralized routing control platform, 2) improve the reliability and security of the current inter-domain routing system, 3) design techniques for resolving tussles between competing network domains, 4) introduce advanced network monitoring and security techniques that intelligently correlate data from multiple domain to diagnose routing outages and attacks.
Max ERC Funding
1 410 600 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym NEXCENTRIC
Project Next-generation on-chip supercontinuum light sources based on graphene-enabled extreme nonlinear optics
Researcher (PI) Nathalie Vermeulen
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary With this ERC project I want to induce a paradigm shift in the development of integrated nonlinear optical devices. Nonlinear optics, the scientific discipline in which nonlinear light-matter interactions are studied, has been a very active area of research ever since the invention of the laser in 1960. Although this scientific branch has great application potential when implemented in on-chip optical waveguides, its promise for the development of widely usable integrated optical devices has not yet been fulfilled. The state-of-the-art of integrated nonlinear optical devices indeed does not comply with the requirements for widespread deployment as these devices rely on non-standard waveguide designs, large on-chip foot prints and/or impractical pump lasers.
Therefore, I propose in this project to eliminate the issues of the state-of-the-art devices by introducing novel material and device physics. More specifically, my goal is to exploit extreme, but practically unexplored, nonlinear optical properties of graphene-covered silicon waveguides to develop next-generation near-infrared-pumped nonlinear supercontinuum light sources. These will truly be “next-generation” sources as they will rely on standard waveguide design, ultra-compact foot prints and practical near-infrared pump lasers, while exhibiting unprecedented performances. The concrete objectives of my project are to theoretically study, model, fabricate and experimentally demonstrate three novel graphene-on-silicon-based nonlinear optical devices that rely on three different nonlinear optical effects, and the on-chip cascading of these novel devices to create the targeted “next-generation” near-infrared-pumped supercontinuum sources with up to four emission bands. Based on my theoretical and experimental research experience with nonlinearities in waveguides and my preliminary modeling results supporting the feasibility of these objectives, I believe that, with this ERC starting grant, I will be able to carry out this original “high-gain/high-risk” project. By doing so, I will introduce a paradigm shift in the development of integrated nonlinear optical devices enabling them to fulfill their long-awaited promise, and at the same time initiate a new era in the research on graphene and its nonlinear optical applications.
Summary
With this ERC project I want to induce a paradigm shift in the development of integrated nonlinear optical devices. Nonlinear optics, the scientific discipline in which nonlinear light-matter interactions are studied, has been a very active area of research ever since the invention of the laser in 1960. Although this scientific branch has great application potential when implemented in on-chip optical waveguides, its promise for the development of widely usable integrated optical devices has not yet been fulfilled. The state-of-the-art of integrated nonlinear optical devices indeed does not comply with the requirements for widespread deployment as these devices rely on non-standard waveguide designs, large on-chip foot prints and/or impractical pump lasers.
Therefore, I propose in this project to eliminate the issues of the state-of-the-art devices by introducing novel material and device physics. More specifically, my goal is to exploit extreme, but practically unexplored, nonlinear optical properties of graphene-covered silicon waveguides to develop next-generation near-infrared-pumped nonlinear supercontinuum light sources. These will truly be “next-generation” sources as they will rely on standard waveguide design, ultra-compact foot prints and practical near-infrared pump lasers, while exhibiting unprecedented performances. The concrete objectives of my project are to theoretically study, model, fabricate and experimentally demonstrate three novel graphene-on-silicon-based nonlinear optical devices that rely on three different nonlinear optical effects, and the on-chip cascading of these novel devices to create the targeted “next-generation” near-infrared-pumped supercontinuum sources with up to four emission bands. Based on my theoretical and experimental research experience with nonlinearities in waveguides and my preliminary modeling results supporting the feasibility of these objectives, I believe that, with this ERC starting grant, I will be able to carry out this original “high-gain/high-risk” project. By doing so, I will introduce a paradigm shift in the development of integrated nonlinear optical devices enabling them to fulfill their long-awaited promise, and at the same time initiate a new era in the research on graphene and its nonlinear optical applications.
Max ERC Funding
1 477 980 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym SPEAR
Project Series-Parallel Elastic Actuators for Robotics
Researcher (PI) Bram Kris Vanderborght
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary Actuators are key components for moving and controlling a mechanism or system. However, the torque and efficiency of the current state-of-the-art actuators are insufficient and much lower than in humans. There are several applications (including prostheses, exoskeletons and running robots) where the unavailability of suitable actuators hinders the development of well-performing machines with capabilities comparable to a human. Remarkable, the power density and efficiency of electric motors are higher than a human muscle, so the problems of insufficient torque and efficiency resides in the transmission of the power and that the motors are not used at their highest efficiency. The first innovation of SPEAR is to solve the torque and efficiency problems, by investigating in depth a novel actuation paradigm, which I call Series-Parallel Elastic Actuation (SPEA) and that goes beyond variable impedance actuators. This new actuation paradigm is inspired by the series-parallel organisation of the muscle fibres. Modularity in actuation is currently introduced by placing in all joints the same motor, leading to over- or underactuated joints. In our body however, all the skeletal muscles are built of the same basic actuation unit: a muscle fibre. Modularity in actuation in a biological system is not at muscle level, but on a sublevel: the muscle fibre. SPEAR will introduce a second major innovation: the SPEA will introduce a basic actuation unit, a “transistor for actuation”. Such a SPEA-element is a missing link in robotics and will innovate the way robots are designed and built. The project will study the theoretical framework, the design principles, the control algorithms and the validation of demonstrators. SPEAR will fully answer all the research challenges and explore the frontiers of this novel actuation paradigm, leading to a tremendous impact on all engineered, actuated systems, especially in robotics.
Summary
Actuators are key components for moving and controlling a mechanism or system. However, the torque and efficiency of the current state-of-the-art actuators are insufficient and much lower than in humans. There are several applications (including prostheses, exoskeletons and running robots) where the unavailability of suitable actuators hinders the development of well-performing machines with capabilities comparable to a human. Remarkable, the power density and efficiency of electric motors are higher than a human muscle, so the problems of insufficient torque and efficiency resides in the transmission of the power and that the motors are not used at their highest efficiency. The first innovation of SPEAR is to solve the torque and efficiency problems, by investigating in depth a novel actuation paradigm, which I call Series-Parallel Elastic Actuation (SPEA) and that goes beyond variable impedance actuators. This new actuation paradigm is inspired by the series-parallel organisation of the muscle fibres. Modularity in actuation is currently introduced by placing in all joints the same motor, leading to over- or underactuated joints. In our body however, all the skeletal muscles are built of the same basic actuation unit: a muscle fibre. Modularity in actuation in a biological system is not at muscle level, but on a sublevel: the muscle fibre. SPEAR will introduce a second major innovation: the SPEA will introduce a basic actuation unit, a “transistor for actuation”. Such a SPEA-element is a missing link in robotics and will innovate the way robots are designed and built. The project will study the theoretical framework, the design principles, the control algorithms and the validation of demonstrators. SPEAR will fully answer all the research challenges and explore the frontiers of this novel actuation paradigm, leading to a tremendous impact on all engineered, actuated systems, especially in robotics.
Max ERC Funding
1 498 620 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym UPTEG
Project Unconventional Principles
of ThermoElectric Generation
Researcher (PI) Jean-François Sebastien Denis Robillard
Host Institution (HI) YNCREA HAUTS DE FRANCE
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary The performance of thermoelectric generation has long since been limited by the fact that it depends on hardly tunable intrinsic materials properties. At the heart of this problem lies a trade-off between sufficient Seebeck coefficient, good electrical properties and suitably low thermal conductivity. The two last being closely related by the ambivalent role of electrons in the conduction of both electrical and thermal currents. Current research focuses on materials composition and structural properties in order to improve this trade-off also known as the figure of merit (zT). Recently, evidences aroused that nanoscale structuration (nanowires, quantum dots, thin-films) can improve zT by means of electron and/or phonon confinement. The aim of this project is to tackle the intrinsic reasons for this low efficiency and bring TE conversion to efficiencies above 10% by exploring two unconventional and complementary approaches:
Phononic Engineering Conversion consists of modulating thermal properties by means of a periodic, precisely designed, arrangement of inclusions on a length scale that compares to phonon means free path. This process is unlocked by state of the art lithography techniques. In its principles, phononic engineering offers an opportunity to tailor the phonon density of states as well as to artificially introduce thermal anisotropy in a semiconductor membrane. Suitable converter architecture is proposed that takes advantage of conductivity reduction and anisotropy to guide and converter heat flow. This approach is fully compatible with standard silicon technologies and is potentially applicable to conformable converters.
The Micro Thermionic Conversion relies on low work function materials and micron scale vacuum gaps to collect a thermally activated current across a virtually zero heat conduction device. This approach, though more risky, envisions devices with equivalent zT around 10 which is far above what can be expected from solid state conversion.
Summary
The performance of thermoelectric generation has long since been limited by the fact that it depends on hardly tunable intrinsic materials properties. At the heart of this problem lies a trade-off between sufficient Seebeck coefficient, good electrical properties and suitably low thermal conductivity. The two last being closely related by the ambivalent role of electrons in the conduction of both electrical and thermal currents. Current research focuses on materials composition and structural properties in order to improve this trade-off also known as the figure of merit (zT). Recently, evidences aroused that nanoscale structuration (nanowires, quantum dots, thin-films) can improve zT by means of electron and/or phonon confinement. The aim of this project is to tackle the intrinsic reasons for this low efficiency and bring TE conversion to efficiencies above 10% by exploring two unconventional and complementary approaches:
Phononic Engineering Conversion consists of modulating thermal properties by means of a periodic, precisely designed, arrangement of inclusions on a length scale that compares to phonon means free path. This process is unlocked by state of the art lithography techniques. In its principles, phononic engineering offers an opportunity to tailor the phonon density of states as well as to artificially introduce thermal anisotropy in a semiconductor membrane. Suitable converter architecture is proposed that takes advantage of conductivity reduction and anisotropy to guide and converter heat flow. This approach is fully compatible with standard silicon technologies and is potentially applicable to conformable converters.
The Micro Thermionic Conversion relies on low work function materials and micron scale vacuum gaps to collect a thermally activated current across a virtually zero heat conduction device. This approach, though more risky, envisions devices with equivalent zT around 10 which is far above what can be expected from solid state conversion.
Max ERC Funding
1 499 507 €
Duration
Start date: 2013-10-01, End date: 2019-07-31