Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym ANGLE
Project Accelerated design and discovery of novel molecular materials via global lattice energy minimisation
Researcher (PI) Graeme Matthew Day
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Summary
The goal of crystal engineering is the design of functional crystalline materials in which the arrangement of basic structural building blocks imparts desired properties. The engineering of organic molecular crystals has, to date, relied largely on empirical rules governing the intermolecular association of functional groups in the solid state. However, many materials properties depend intricately on the complete crystal structure, i.e. the unit cell, space group and atomic positions, which cannot be predicted solely using such rules. Therefore, the development of computational methods for crystal structure prediction (CSP) from first principles has been a goal of computational chemistry that could significantly accelerate the design of new materials. It is only recently that the necessary advances in the modelling of intermolecular interactions and developments in algorithms for identifying all relevant crystal structures have come together to provide predictive methods that are becoming reliable and affordable on a timescale that could usefully complement an experimental research programme. The principle aim of the proposed work is to establish the use of state-of-the-art crystal structure prediction methods as a means of guiding the discovery and design of novel molecular materials.
This research proposal both continues the development of the computational methods for CSP and, by developing a computational framework for screening of potential molecules, develops the application of these methods for materials design. The areas on which we will focus are organic molecular semiconductors with high charge carrier mobilities and, building on our recently published results in Nature [1], the development of porous organic molecular materials. The project will both deliver novel materials, as well as improvements in the reliability of computational methods that will find widespread applications in materials chemistry.
[1] Nature 2011, 474, 367-371.
Max ERC Funding
1 499 906 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym APHIDHOST
Project Molecular determinants of aphid host range
Researcher (PI) Jorunn Indra Berit Bos
Host Institution (HI) THE JAMES HUTTON INSTITUTE
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Summary
Many aphid species are restricted to one or few host plants, while some aphids, many of which are of agricultural importance, can infest a wide range of plant species. An important observation is that aphids spend a considerable time on nonhost species, where they probe the leaf tissue and secrete saliva, but for unknown reasons are unable to ingest phloem sap. This suggest that aphids, like plant pathogens, interact with nonhost plants at the molecular level, but potentially are not successful in suppressing plant defenses and/or releasing nutrients. To date, however, the plant cellular changes and the involvement of immune response, such as ETI and PTI, in aphid-host and -nonhost interactions remain elusive. The aim of the proposed project is to gain insight into the level of cellular host reprogramming that takes place during aphid-host interactions, the cellular processes involved in aphid nonhost resistance, and the role of aphid effectors in determining host range. We will compare interactions of two economically important aphid species, Myzus persicae (green peach aphid) and Rhopalosiphum padi (bird cherry oat aphid), with host and nonhost plants. We will investigate local changes in plant cellular processes during aphid-host and -nonhost interactions using microscopy and biochemistry approaches. We will apply a comparative transcriptomics approach and functional assays to identify aphid effectors as potential determinants of host range. Herein we will specifically looks for aphids-species specific effectors and those that are expressed in specific host interactions. To gain insight into molecular mechanisms of effector activities we will identify host targets and investigate the contribution of effector-target interactions to host range. The expected outcomes of the project will, in the long term, contribute to the development of novel strategies to control infestations by aphids and potentially other pests and pathogens, thereby improving food security.
Max ERC Funding
1 463 840 €
Duration
Start date: 2013-02-01, End date: 2018-10-31
Project acronym APMPAL
Project Asset Prices and Macro Policy when Agents Learn
Researcher (PI) Albert Marcet Torrens
Host Institution (HI) FUNDACIÓ MARKETS, ORGANIZATIONS AND VOTES IN ECONOMICS
Call Details Advanced Grant (AdG), SH1, ERC-2012-ADG_20120411
Summary "A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Summary
"A conventional assumption in dynamic models is that agents form their expectations in a very sophisticated manner. In particular, that they have Rational Expectations (RE). We develop some tools to relax this assumption while retaining fully optimal behaviour by agents. We study implications for asset pricing and macro policy.
We assume that agents have a consistent set of beliefs that is close, but not equal, to RE. Agents are ""Internally Rational"", that is, they behave rationally given their system of beliefs. Thus, it is conceptually a small deviation from RE. It provides microfoundations for models of adaptive learning, since the learning algorithm is determined by agents’ optimal behaviour. In previous work we have shown that this framework can match stock price and housing price fluctuations, and that policy implications are quite different.
In this project we intend to: i) develop further the foundations of internally rational (IR) learning, ii) apply this to explain observed asset price price behavior, such as stock prices, bond prices, inflation, commodity derivatives, and exchange rates, iii) extend the IR framework to the case when agents entertain various models, iv) optimal policy under IR learning and under private information when some hidden shocks are not revealed ex-post. Along the way we will address policy issues such as: effects of creating derivative markets, sovereign spread as a signal of sovereign default risk, tests of fiscal sustainability, fiscal policy when agents learn, monetary policy (more specifically, QE measures and interest rate policy), and the role of credibility in macro policy."
Max ERC Funding
1 970 260 €
Duration
Start date: 2013-06-01, End date: 2018-08-31
Project acronym ARISYS
Project Engineering an artificial immune system with functional components assembled from prokaryotic parts and modules
Researcher (PI) Víctor De Lorenzo Prieto
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS9, ERC-2012-ADG_20120314
Summary The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Summary
The objective of this project is to overcome current limitations for antibody production that are inherent to the extant immune system of vertebrates. This will be done by creating an all-in-one artificial/synthetic counterpart based exclusively on prokaryotic parts, devices and modules. To this end, ARISYS will exploit design concepts, construction hierarchies and standardization notions that stem from contemporary Synthetic Biology for the assembly and validation of (what we believe is) the most complex artificial biological system ventured thus far. This all-bacterial immune-like system will not only simplify and make affordable the manipulations necessary for antibody generation, but will also permit the application of such binders by themselves or displayed on bacterial cells to biotechnological challenges well beyond therapeutic and health-related uses. The work plan involves the assembly and validation of autonomous functional modules for [i] displaying antibody/affibody (AB) scaffolds attached to the surface of bacterial cells, [ii] conditional diversification of target-binding sequences of the ABs, [iii] contact-dependent activation of gene expression, [iv] reversible bi-stable switches, and [v] clonal selection and amplification of improved binders. These modules composed of stand-alone parts and bearing well defined input/output functions, will be assembled in the genomic chassis of streamlined Escherichia coli and Pseudomonas putida strains. The resulting molecular network will make the ABs expressed and displayed on the cell surface to proceed spontaneously (or at the user's decision) through subsequent cycles of affinity and specificity maturation towards antigens or other targets presented to the bacterial population. In this way, a single, easy-to-handle (albeit heavily engineered) strain will govern all operations that are typically scattered in a multitude of separate methods and apparatuses for AB production.
Max ERC Funding
2 422 271 €
Duration
Start date: 2013-05-01, End date: 2019-04-30
Project acronym ASES
Project "Advancing computational chemistry with new accurate, robust and scalable electronic structure methods"
Researcher (PI) Hans-Joachim Werner
Host Institution (HI) UNIVERSITAET STUTTGART
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary "The objective of this proposal is to tackle two of the greatest challenges in quantum chemistry: (i) extending the applicability of highly accurate wave function methods to large molecular systems, and (ii) developing accurate and robust multi-reference methods that can be used for studying important but very difficult problems in transition metal chemistry, catalysis, and photochemistry. Solutions to these problems have now come within reach due to three advances we recently reported: first, the steep scaling of the computational cost with molecular size can be reduced to linear by exploiting the short-range character of electron correlation (local correlation methods). Second, the accuracy, efficiency, and robustness of these local correlation methods can be strongly improved by new tensor decomposition approaches and the inclusion of terms depending explicitly on the inter-electronic distances (F12 methods). Third, the development of highly complex electronic structure theories can be greatly facilitated and accelerated by new automated tensor network evaluation techniques. We are certain that by combining and generalizing these advances the long-standing problems (i) and (ii) can be solved. We will focus especially on highly scalable algorithms in order to use massively parallel computer systems efficiently. For linear-scaling methods this means that the size of the molecules that can be treated in a fixed time will grow linearly with the number of available processors. We will furthermore explore new multi-reference ansätze and implement analytical energy gradients and response properties for local methods. Hybrid and embedding methods to account for solvent and environment effects will also be investigated. It is our priority to make our new methods as easy to use, robust, and widely applicable as possible. We believe that they will open entirely new horizons for innumerable applications in chemistry, physics, biology, and materials science."
Summary
"The objective of this proposal is to tackle two of the greatest challenges in quantum chemistry: (i) extending the applicability of highly accurate wave function methods to large molecular systems, and (ii) developing accurate and robust multi-reference methods that can be used for studying important but very difficult problems in transition metal chemistry, catalysis, and photochemistry. Solutions to these problems have now come within reach due to three advances we recently reported: first, the steep scaling of the computational cost with molecular size can be reduced to linear by exploiting the short-range character of electron correlation (local correlation methods). Second, the accuracy, efficiency, and robustness of these local correlation methods can be strongly improved by new tensor decomposition approaches and the inclusion of terms depending explicitly on the inter-electronic distances (F12 methods). Third, the development of highly complex electronic structure theories can be greatly facilitated and accelerated by new automated tensor network evaluation techniques. We are certain that by combining and generalizing these advances the long-standing problems (i) and (ii) can be solved. We will focus especially on highly scalable algorithms in order to use massively parallel computer systems efficiently. For linear-scaling methods this means that the size of the molecules that can be treated in a fixed time will grow linearly with the number of available processors. We will furthermore explore new multi-reference ansätze and implement analytical energy gradients and response properties for local methods. Hybrid and embedding methods to account for solvent and environment effects will also be investigated. It is our priority to make our new methods as easy to use, robust, and widely applicable as possible. We believe that they will open entirely new horizons for innumerable applications in chemistry, physics, biology, and materials science."
Max ERC Funding
2 454 000 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym ATTOSCOPE
Project Measuring attosecond electron dynamics in molecules
Researcher (PI) Hans Jakob Wörner
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary "The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Summary
"The goal of the present proposal is to realize measurements of electronic dynamics in polyatomic
molecules with attosecond temporal resolution (1 as = 10^-18s). We propose to study electronic
rearrangements following photoexcitation, charge migration in a molecular chain induced by
ionization and non-adiabatic multi-electron dynamics in an intense laser field. The grand question
addressed by this research is the characterization of electron correlations which control the shape, properties and function of molecules. In all three proposed projects, a time-domain approach appears to be the most suitable since it reduces complex molecular dynamics to the purely electronic dynamics by exploiting the hierarchy of motional time scales. Experimentally, we propose to realize an innovative experimental setup. A few-cycle infrared (IR) pulse will be used to generate attosecond pulses in the extreme-ultraviolet (XUV) by high-harmonic generation. The IR pulse will be separated from the XUV by means of an innovative interferometer. Additionally, it will permit the introduction of a controlled attosecond delay between the two pulses. We propose to use the attosecond pulses as a tool to look inside individual IR- or UV-field cycles to better understand light-matter interactions. Time-resolved pump-probe experiments will be carried out on polyatomic molecules by detecting the energy and angular distribution of photoelectrons in a velocity-map imaging spectrometer. These experiments are expected to provide new insights
into the dynamics of multi-electron systems along with new results for the validation and
improvement of theoretical models. Multi-electron dynamics is indeed a very complex subject
on its own and even more so in the presence of strong laser fields. The proposed experiments
directly address theses challenges and are expected to provide new insights that will be beneficial to a wide range of scientific research areas."
Max ERC Funding
1 999 992 €
Duration
Start date: 2012-09-01, End date: 2017-08-31
Project acronym BEHAVIORAL THEORY
Project Behavioral Theory and Economic Applications
Researcher (PI) Botond Koszegi
Host Institution (HI) KOZEP-EUROPAI EGYETEM
Call Details Starting Grant (StG), SH1, ERC-2012-StG_20111124
Summary "This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Summary
"This proposal outlines projects to develop robust and portable theories studying the impact of psychological phenomena in economic settings. The proposed work falls in three broad research agendas.
My first main agenda is to formally model and economically apply a simple observation: that when people make decisions, they do not focus equally on all attributes of their available options, and overweight the attributes they focus on. I will build a set of portable models of focusing in attribute-based choice and risky choice based on the idea that a person focuses more on attributes in which her options differ more. I will also use the framework to develop novel, focus-based, theories of intertemporal choice and social preferences, as well as analyze the implications of focusing for product design, principal-agent relationships, and other economic questions.
My second main agenda is to explore some implications for market outcomes, welfare, and policy of the possibility that consumers misperceive certain aspects of products. I will investigate the circumstances that facilitate the profitable deception of consumers; firms' incentives for ""innovating"" deceptive products, including novel financial products aimed at exploiting investors; how firms' ability to distinguish naive and sophisticated consumers affects the consequences of deception; whether learning on the part of consumers will help them to avoid making mistakes; and how regulators and other observers can detect consumer mistakes from market data.
Two further projects apply the model of reference-dependent utility I have developed in earlier work to understand the pricing and advertising behavior of firms. I will also aim to disseminate some of my work, along with other cutting-edge research in psychology and economics, in a Journal of Economic Literature survey on ""Behavioral Contract Theory."""
Max ERC Funding
1 275 448 €
Duration
Start date: 2012-11-01, End date: 2018-10-31
Project acronym BioLEAP
Project Biotechnological optimization of light use efficiency in algae photobioreactors
Researcher (PI) Tomas Morosinotto
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Summary
New renewable energy source are highly needed to compensate exhausting fossil fuels reserves and reduce greenhouse gases emissions. Some species of algae have an interesting potential as feedstock for the production of biodiesel thanks to their ability to accumulate large amount of lipids. Strong research efforts are however needed to fulfil this potential and address many issues involving optimization of cultivation systems, biomass harvesting and algae genetic improvement. This proposal aims to address one of these issues, the optimization of algae light use efficiency. Light, in fact, provides the energy supporting algae growth and must be exploited with the highest possible efficiency to achieve sufficient productivity.
In a photobioreactor algae are highly concentrated and this cause a inhomogeneous light distribution with a large fraction of the cells exposed to very low light or even in the dark. Algae are also actively mixed and they can abruptly move from dark to full illumination and vice versa. This proposal aims to assess how alternation of dark/light cycles affect algae growth and functionality of photosynthetic apparatus both in batch and continuous cultures. In collaboration with the Chemical Engineering department, experimental data will be exploited to build a model describing the photobioreactor, a fundamental tool to improve its design.
The other main scope of this proposal is the isolation of genetically improved strains more suitable to the artificial environment of a photobioreactor. A first part of the work of setting up protocols for transformation will be followed by a second phase for generation and selection of mutants with altered photosynthetic performances. Transcriptome analyses in different light conditions will also be instrumental to identify genes to be targeted by genetic engineering.
Max ERC Funding
1 257 600 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym CHEMAGEB
Project CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems
Researcher (PI) Roman Tauler Ferrer
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Summary
We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Max ERC Funding
2 454 280 €
Duration
Start date: 2013-04-01, End date: 2018-03-31