Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym AFTERTHEGOLDRUSH
Project Addressing global sustainability challenges by changing perceptions in catalyst design
Researcher (PI) Graham John Hutchings
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Summary
One of the greatest challenges facing society is the sustainability of resources. At present, a step change in the sustainable use of resources is needed and catalysis lies at the heart of the solution by providing new routes to carbon dioxide mitigation, energy security and water conservation. It is clear that new high efficiency game-changing catalysts are required to meet the challenge. This proposal will focus on excellence in catalyst design by learning from recent step change advances in gold catalysis by challenging perceptions. Intense interest in gold catalysts over the past two decades has accelerated our understanding of gold particle-size effects, gold-support and gold-metal interactions, the interchange between atomic and ionic gold species, and the role of the gold-support interface in creating and maintaining catalytic activity. The field has also driven the development of cutting-edge techniques, particularly in microscopy and transient kinetics, providing detailed structural characterisation on the nano-scale and probing the short-range and often short-lived interactions. By comparison, our understanding of other metal catalysts has remained relatively static.
The proposed programme will engender a step change in the design of supported-metal catalysts, by exploiting the learning and the techniques emerging from gold catalysis. The research will be set out in two themes. In Theme 1 two established key grand challenges will be attacked; namely, energy vectors and greenhouse gas control. Theme 2 will address two new and emerging grand challenges in catalysis namely the effective low temperature activation of primary carbon hydrogen bonds and CO2 utilisation where instead of treating CO2 as a thermodynamic endpoint, the aim will be to re-use it as a feedstock for bulk chemical and fuel production. The legacy of the research will be the development of a new catalyst design approach that will provide a tool box for future catalyst development.
Max ERC Funding
2 279 785 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ARYLATOR
Project New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation
Researcher (PI) Guy Charles Lloyd-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Summary
This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Max ERC Funding
2 114 223 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BARRIERS
Project The evolution of barriers to gene exchange
Researcher (PI) Roger BUTLIN
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Advanced Grant (AdG), LS8, ERC-2015-AdG
Summary Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Summary
Speciation is a central process in evolution that involves the origin of barriers to gene flow between populations. Species are typically isolated by several barriers and assembly of multiple barriers separating the same populations seems to be critical to the evolution of strong reproductive isolation. Barriers resulting from direct selection can become coincident through a process of coupling while reinforcement can add barrier traits that are not under direct selection. In the presence of gene flow, these processes are opposed by recombination. While recent research using the latest sequencing technologies has provided much increased knowledge of patterns of differentiation and the genetic basis of local adaptation, it has so far added little to understanding of the coupling and reinforcement processes.
In this project, I will focus on the accumulation of barriers to gene exchange and the processes underlying increasing reproductive isolation. I will use the power of natural contact zones, combined with novel manipulative experiments, to separate the processes that underlie patterns of differentiation and introgression. The Littorina saxatilis model system allows me to do this with both local replication and a contrast between distinct spatial contexts on a larger geographic scale. I will use modelling to determine how processes interact and to investigate the conditions most likely to promote coupling and reinforcement. Overall, the project will provide major new insights into the speciation process, particularly revealing the requirements for progress towards complete reproductive isolation.
Max ERC Funding
2 499 927 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym BATNMR
Project Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries
Researcher (PI) Clare GREY
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Summary
The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Max ERC Funding
3 498 219 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BAYNET
Project Bayesian Networks and Non-Rational Expectations
Researcher (PI) Ran SPIEGLER
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary "This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Summary
"This project will develop a new framework for modeling economic agents having ""boundedly rational expectations"" (BRE). It is based on the concept of Bayesian networks (more generally, graphical models), borrowed from statistics and AI. In the framework's basic version, an agent is characterized by a directed acyclic graph (DAG) over the set of all relevant random variables. The DAG is the agent's ""type"" – it represents how he systematically distorts any objective probability distribution into a subjective belief. Technically, the distortion takes the form of the standard Bayesian-network factorization formula given by the agent's DAG. The agent's choice is modeled as a ""personal equilibrium"", because his subjective belief regarding the implications of his actions can vary with his own long-run behavior. The DAG representation unifies and simplifies existing models of BRE, subsuming them as special cases corresponding to distinct graphical representations. It captures hitherto-unmodeled fallacies such as reverse causation. The framework facilitates behavioral characterizations of general classes of models of BRE and expands their applicability. I will demonstrate this with applications to monetary policy, behavioral I.O., asset pricing, etc. I will extend the basic formalism to multi-agent environments, addressing issues beyond the reach of current models of BRE (e.g., formalizing the notion of ""high-order"" limited understanding of statistical regularities). Finally, I will seek a learning foundation for the graphical representation of BRE, in the sense that it will capture how the agent extrapolates his belief from a dataset (drawn from the objective distribution) containing ""missing values"", via some intuitive ""imputation method"". This part, too, borrows ideas from statistics and AI, further demonstrating the project's interdisciplinary nature."
Max ERC Funding
1 379 288 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BESTDECISION
Project "Behavioural Economics and Strategic Decision Making: Theory, Empirics, and Experiments"
Researcher (PI) Vincent Paul Crawford
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH1, ERC-2013-ADG
Summary "I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Summary
"I will study questions of central microeconomic importance via interwoven theoretical, empirical, and experimental analyses, from a behavioural perspective combining standard methods with assumptions that better reflect evidence on behaviour and psychological insights. The contributions of behavioural economics have been widely recognized, but the benefits of its insights are far from fully realized. I propose four lines of inquiry that focus on how institutions interact with cognition and behaviour, chosen for their potential to reshape our understanding of important questions and their synergies across lines.
The first line will study nonparametric identification and estimation of reference-dependent versions of the standard microeconomic model of consumer demand or labour supply, the subject of hundreds of empirical studies and perhaps the single most important model in microeconomics. It will allow such studies to consider relevant behavioural factors without imposing structural assumptions as in previous work.
The second line will analyze history-dependent learning in financial crises theoretically and experimentally, with the goal of quantifying how market structure influences the likelihood of a crisis.
The third line will study strategic thinking experimentally, using a powerful new design that links subjects’ searches for hidden payoff information (“eye-movements”) much more directly to thinking.
The fourth line will significantly advance Myerson and Satterthwaite’s analyses of optimal design of bargaining rules and auctions, which first went beyond the analysis of given institutions to study what is possible by designing new institutions, replacing their equilibrium assumption with a nonequilibrium model that is well supported by experiments.
The synergies among these four lines’ theoretical analyses, empirical methods, and data analyses will accelerate progress on each line well beyond what would be possible in a piecemeal approach."
Max ERC Funding
1 985 373 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BIO-H-BORROW
Project Biocatalytic Amine Synthesis via Hydrogen Borrowing
Researcher (PI) Nicholas TURNER
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Summary
Amine containing compounds are ubiquitous in everyday life and find applications ranging from polymers to pharmaceuticals. The vast majority of amines are synthetic and manufactured on large scale which creates waste as well as requiring high temperatures and pressures. The increasing availability of biocatalysts, together with an understanding of how they can be used in organic synthesis (biocatalytic retrosynthesis), has stimulated chemists to consider new ways of making target molecules. In this context, the iterative construction of C-N bonds via biocatalytic hydrogen borrowing represents a powerful and unexplored way to synthesise a wide range of target amine molecules in an efficient manner. Hydrogen borrowing involves telescoping redox neutral reactions together using only catalytic amounts of hydrogen.
In this project we will engineer the three key target biocatalysts (reductive aminase, amine dehydrogenase, alcohol dehydrogenase) required for biocatalytic hydrogen borrowing such that they possess the required regio-, chemo- and stereo-selectivity for practical application. Recently discovered reductive aminases (RedAms) and amine dehydrogenases (AmDHs) will be engineered for enantioselective coupling of alcohols (1o, 2o) with ammonia/amines (1o, 2o, 3o) under redox neutral conditions. Alcohol dehydrogenases will be engineered for low enantioselectivity. Hydrogen borrowing requires mutually compatible cofactors shared by two enzymes and in some cases will require redesign of cofactor specificity. Thereafter we shall develop conditions for the combined use of these biocatalysts under hydrogen borrowing conditions (catalytic NADH, NADPH), to enable the conversion of simple and sustainable feedstocks (alcohols) into amines using ammonia as the nitrogen source.
The main deliverables of BIO-H-BORROW will be a set of novel engineered biocatalysts together with redox neutral cascades for the synthesis of amine products from inexpensive and renewable precursors.
Max ERC Funding
2 337 548 €
Duration
Start date: 2017-06-01, End date: 2022-05-31