Project acronym ATOMKI-PPROCESS
Project Nuclear reaction studies relevant to the astrophysical p-process nucleosynthesis
Researcher (PI) György Gyürky
Host Institution (HI) Magyar Tudomanyos Akademia Atommagkutato Intezete
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The astrophysical p-process, the stellar production mechanism of the heavy, proton rich isotopes (p-isotopes), is one of the least studied processes in nucleosynthesis. The astrophysical site(s) for the p-process could not yet be clearly identified. In order to reproduce the natural abundances of the p-isotopes, the p-process models must take into account a huge nuclear reaction network. A precise knowledge of the rate of the nuclear reactions in this network is essential for a reliable abundance calculation and for a clear assignment of the astrophysical site(s). For lack of experimental data the nuclear physics inputs for the reaction networks are based on statistical model calculations. These calculations are largely untested in the mass and energy range relevant to the p-process and the uncertainties in the reaction rate values result in a correspondingly uncertain prediction of the p-isotope abundances. Therefore, experiments aiming at the determination of reaction rates for the p-process are of great importance. In this project nuclear reaction cross section measurements will be carried out in the mass and energy range of p-process to check the reliability of the statistical model calculations and to put the p-process models on a more reliable base. The accelerators of the Institute of Nuclear Research in Debrecen, Hungary provide the necessary basis for such studies. The p-process model calculations are especially sensitive to the rates of reactions involving alpha particles and heavy nuclei. Because of technical difficulties, so far there are practically no experimental data available on such reactions and the uncertainty in these reaction rates is presently one of the biggest contributions to the uncertainty of p-isotope abundance calculations. With the help of the ERC grant the alpha-induced reaction cross sections can be measured on heavy isotopes for the first time, which could contribute to a better understanding of the astrophysical p-process.
Summary
The astrophysical p-process, the stellar production mechanism of the heavy, proton rich isotopes (p-isotopes), is one of the least studied processes in nucleosynthesis. The astrophysical site(s) for the p-process could not yet be clearly identified. In order to reproduce the natural abundances of the p-isotopes, the p-process models must take into account a huge nuclear reaction network. A precise knowledge of the rate of the nuclear reactions in this network is essential for a reliable abundance calculation and for a clear assignment of the astrophysical site(s). For lack of experimental data the nuclear physics inputs for the reaction networks are based on statistical model calculations. These calculations are largely untested in the mass and energy range relevant to the p-process and the uncertainties in the reaction rate values result in a correspondingly uncertain prediction of the p-isotope abundances. Therefore, experiments aiming at the determination of reaction rates for the p-process are of great importance. In this project nuclear reaction cross section measurements will be carried out in the mass and energy range of p-process to check the reliability of the statistical model calculations and to put the p-process models on a more reliable base. The accelerators of the Institute of Nuclear Research in Debrecen, Hungary provide the necessary basis for such studies. The p-process model calculations are especially sensitive to the rates of reactions involving alpha particles and heavy nuclei. Because of technical difficulties, so far there are practically no experimental data available on such reactions and the uncertainty in these reaction rates is presently one of the biggest contributions to the uncertainty of p-isotope abundance calculations. With the help of the ERC grant the alpha-induced reaction cross sections can be measured on heavy isotopes for the first time, which could contribute to a better understanding of the astrophysical p-process.
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym BRAINCANNABINOIDS
Project Understanding the molecular blueprint and functional complexity of the endocannabinoid metabolome in the brain
Researcher (PI) István Katona
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Summary
We and others have recently delineated the molecular architecture of a new feedback pathway in brain synapses, which operates as a synaptic circuit breaker. This pathway is supposed to use a group of lipid messengers as retrograde synaptic signals, the so-called endocannabinoids. Although heterogeneous in their chemical structures, these molecules along with the psychoactive compound in cannabis are thought to target the same effector in the brain, the CB1 receptor. However, the molecular catalog of these bioactive lipids and their metabolic enzymes has been expanding rapidly by recent advances in lipidomics and proteomics raising the possibility that these lipids may also serve novel, yet unidentified physiological functions. Thus, the overall aim of our research program is to define the molecular and anatomical organization of these endocannabinoid-mediated pathways and to determine their functional significance. In the present proposal, we will focus on understanding how these novel pathways regulate synaptic and extrasynaptic signaling in hippocampal neurons. Using combination of lipidomic, genetic and high-resolution anatomical approaches, we will identify distinct chemical species of endocannabinoids and will show how their metabolic enzymes are segregated into different subcellular compartments in cell type- and synapse-specific manner. Subsequently, we will use genetically encoded gain-of-function, loss-of-function and reporter constructs in imaging experiments and electrophysiological recordings to gain insights into the diverse tasks that these new pathways serve in synaptic transmission and extrasynaptic signal processing. Our proposed experiments will reveal fundamental principles of intercellular and intracellular endocannabinoid signaling in the brain.
Max ERC Funding
1 638 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym CholAminCo
Project Synergy and antagonism of cholinergic and dopaminergic systems in associative learning
Researcher (PI) Balazs Gyoergy HANGYA
Host Institution (HI) INSTITUTE OF EXPERIMENTAL MEDICINE - HUNGARIAN ACADEMY OF SCIENCES
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Summary
Neuromodulators such as acetylcholine and dopamine are able to rapidly reprogram neuronal information processing and dynamically change brain states. Degeneration or dysfunction of cholinergic and dopaminergic neurons can lead to neuropsychiatric conditions like schizophrenia and addiction or cognitive diseases such as Alzheimer’s. Neuromodulatory systems control overlapping cognitive processes and often have similar modes of action; therefore it is important to reveal cooperation and competition between different systems to understand their unique contributions to cognitive functions like learning, memory and attention. This is only possible by direct comparison, which necessitates monitoring multiple neuromodulatory systems under identical experimental conditions. Moreover, simultaneous recording of different neuromodulatory cell types goes beyond phenomenological description of similarities and differences by revealing the underlying correlation structure at the level of action potential timing. However, such data allowing direct comparison of neuromodulatory actions are still sparse. As a first step to bridge this gap, I propose to elucidate the unique versus complementary roles of two “classical” neuromodulatory systems, the cholinergic and dopaminergic projection system implicated in various cognitive functions including associative learning and plasticity. First, we will record optogenetically identified cholinergic and dopaminergic neurons simultaneously using chronic extracellular recording in mice undergoing classical and operant conditioning. Second, we will determine the postsynaptic impact of cholinergic and dopaminergic neurons by manipulating them both separately and simultaneously while recording consequential changes in cortical neuronal activity and learning behaviour. These experiments will reveal how major neuromodulatory systems interact to mediate similar or different aspects of the same cognitive functions.
Max ERC Funding
1 499 463 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym COOPAIRENT
Project Cooper pairs as a source of entanglement
Researcher (PI) Szabolcs Csonka
Host Institution (HI) BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Summary
Entanglement and non-locality are spectacular fundamentals of quantum mechanics and basic resources of future quantum computation algorithms. Electronic entanglement has attracted increasing attention during the last years. The electron spin as a purely quantum mechanical two level system has been put forward as a promising candidate for storing quantum information in solid state. Recently, great progress has been achieved in manipulation and read-out of quantum dot based spin Qubits. However, electron spin is also suitable to transfer quantum information, since mobile electrons can be coherently transmitted in a solid state device preserving the spin information. Thus, electron spin could provide a general platform for on-chip quantum computation and information processing.
Although several theoretical concepts have been worked out to address spin entangled mobile electrons, the absence of an entangler device has not allowed their realization so far. The aim of the present proposal is to overcome this experimental challenge and explore the entanglement of spatially separated electron pairs. Superconductors provide a natural source of entanglement, because their ground-state is composed of Cooper pairs in a spin-singlet state. However, the splitting of the Cooper pairs into separate electrons has to be enforced, which has been very recently realized by the applicant in two quantum dot Y-junction. This Y-junction will be used as a central building block to split Cooper pairs in a controlled fashion and the non-local nature of spin and charge correlations will be addressed in various device configurations.
Our research project will lead to a fundamental understanding of the production, manipulation and detection of spin entangled mobile electron pairs, thus it will significantly extend the frontiers of quantum coherence and opens a new horizon in the field of on-chip quantum information technologies.
Max ERC Funding
1 496 112 €
Duration
Start date: 2011-02-01, End date: 2016-10-31
Project acronym COSMASS
Project Constraining Stellar Mass and Supermassive Black Hole Growth through Cosmic Times: Paving the way for the next generation sky surveys
Researcher (PI) Vernesa Smolcic
Host Institution (HI) FACULTY OF SCIENCE UNIVERSITY OF ZAGREB
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Summary
Understanding how galaxies form in the early universe and how they evolve through cosmic time is a major goal of modern astrophysics. Panchromatic look-back sky surveys significantly advanced the field in the past decade, and we are now entering a 'golden age' of radio astronomy given an order of magnitude improved facilities like JVLA, ATCA and ALMA. I am leading two unique, state-of-the-art (JVLA/ATCA) radio surveys that will push to the next frontiers. The proposed ERC project will focus on the growth of stellar and black-hole mass in galaxies across cosmic time by: 1-probing various types of extremely faint radio sources over cosmic time, revealing the debated abundance of faint radio sources, 2-exploring star formation conditions at early cosmic times, allowing to access for the first time the dust-unbiased cosmic star formation history since the epoch of reionization, 3-performing the first census of high-redshift starbursting galaxies (SMGs), and their role in galaxy formation and evolution, and 4-performing a full census of galaxies hosting supermassive black holes (AGN), with different black-hole accretion modes, and their roles in galaxy evolution.
The exploitation of these radio sky surveys is essential for the preparation and success of the future large facilities like ASKAP, and SKA as they will 1-provide best predictions of the to-date uncertain cosmic radio background seen with the SKA, and 2-optimize photometric redshift estimates, essential for the success of the first ASKAP sky survey (EMU, >2016).
My radio surveys, expected to yield >100 refereed publications, carry an immense legacy value. The proposed ERC funding is essential for the success of these timely surveys, which I will conduct from Croatia. The ERC grant will allow me to lead my own research group working on this novel data, and to even more firmly establish myself as a leading survey scientist, and lead my group to internationally competitive levels, and enhance EU competitiveness.
Max ERC Funding
1 500 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym EPIDELAY
Project Delay differential models and transmission dynamics of infectious diseases
Researcher (PI) Gergely Röst
Host Institution (HI) SZEGEDI TUDOMANYEGYETEM
Call Details Starting Grant (StG), PE1, ERC-2010-StG_20091028
Summary The aim of this project is to develop and analyse infinite dimensional dynamical models for the transmission dynamics and propagation of infectious diseases. We use an integrated approach which spans from the abstract theory of functional differential equations to the practical problems of epidemiology, with serious implications to public health policy, prevention, control and mitigation strategies in cases such as the ongoing battle against the nascent H1N1 pandemic.
Delay differential equations are one of the most powerful mathematical modeling tools and they arise naturally in various applications from life sciences to engineering and physics, whenever temporal delays are important. In abstract terms, functional differential equations describe dynamical systems, when their evolution depends on the solution at prior times.
The central theme of this project is to forge strong links between the abstract theory of delay differential equations and practical aspects of epidemiology. Our research will combine competencies in different fields of mathematics and embrace theoretical issues as well as real life applications.
In particular, the theory of equations with state dependent delays is extremely challenging, and this field is at present on the verge of a breakthrough. Developing new theories in this area and connecting them to relevant applications would go far beyond the current research frontier of mathematical epidemiology and could open a new chapter in disease modeling.
Summary
The aim of this project is to develop and analyse infinite dimensional dynamical models for the transmission dynamics and propagation of infectious diseases. We use an integrated approach which spans from the abstract theory of functional differential equations to the practical problems of epidemiology, with serious implications to public health policy, prevention, control and mitigation strategies in cases such as the ongoing battle against the nascent H1N1 pandemic.
Delay differential equations are one of the most powerful mathematical modeling tools and they arise naturally in various applications from life sciences to engineering and physics, whenever temporal delays are important. In abstract terms, functional differential equations describe dynamical systems, when their evolution depends on the solution at prior times.
The central theme of this project is to forge strong links between the abstract theory of delay differential equations and practical aspects of epidemiology. Our research will combine competencies in different fields of mathematics and embrace theoretical issues as well as real life applications.
In particular, the theory of equations with state dependent delays is extremely challenging, and this field is at present on the verge of a breakthrough. Developing new theories in this area and connecting them to relevant applications would go far beyond the current research frontier of mathematical epidemiology and could open a new chapter in disease modeling.
Max ERC Funding
796 800 €
Duration
Start date: 2011-05-01, End date: 2016-12-31
Project acronym GalNUC
Project Astrophysical Dynamics and Statistical Physics of Galactic Nuclei
Researcher (PI) Bence Kocsis
Host Institution (HI) EOTVOS LORAND TUDOMANYEGYETEM
Call Details Starting Grant (StG), PE9, ERC-2014-STG
Summary We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Summary
We address some of the major unsolved questions of galactic nuclei using methods of condensed matter physics. Galactic nuclei host a central supermassive black hole, a dense population of stars and compact objects, and in many cases a bright gaseous disk feeding the supermassive black hole. The observed stellar distribution exhibits both spherical and counterrotating disk-like structures. Existing theoretical models cannot convincingly explain the origin of the stellar disks. Is there also a “dark cusp” or “dark disk” of stellar mass black holes? Are there intermediate mass black holes in the Galactic center? We examine the statistical physics of galactic nuclei and their long term dynamical evolution. A star orbiting a supermassive black hole on an eccentric precessing orbit covers an axisymmetric annulus. The long-term gravitational interaction between such annuli is similar to the Coulomb interaction between axisymmetric molecules constituting a liquid crystal. We apply standard methods of condensed matter physics to examine these astrophysical systems. The observed disk and spherical structures represent isotropic-nematic phase transitions. We derive the phase space distribution and time-evolution of different stellar components including a population of black holes. Further, we investigate the interaction of a stellar cluster with a gaseous disk, if present. This leads to the formation of gaps, warps, and spiral waves in the disk, the redistribution of stellar objects, and possibly the formation of intermediate mass black holes. We explore the implications for electromagnetic and gravitational wave observatories. Dark disks of black holes could provide the most frequent source of gravitational waves for LIGO and VIRGO. These detectors will open a new window on the Universe; the proposed project will open a new field in gravitational wave astrophysics to interpret the sources. We also explore implications for electromagnetic observations.
Max ERC Funding
1 511 436 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym HIGHACCTC
Project High-accuracy models in theoretical chemistry
Researcher (PI) Mihály Kállay
Host Institution (HI) BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM
Call Details Starting Grant (StG), PE4, ERC-2007-StG
Summary Even today, quantum chemical calculations with experimental accuracy are only feasible for small molecules. This statement is especially true if the considered molecule is far from the equilibrium structure, where the overwhelming majority of quantum chemical models break down. The main purpose of this proposal is to develop new quantum chemical methods that are applicable to at least medium-sized molecules and simultaneously provide results sufficiently close to the experimental data and are capable of describing entire potential energy surfaces. The accuracy goal will be achieved through the reduction of the computational cost of high-precision quantum chemical calculations, which are currently practical for molecules of up to 15 atoms. The cost reduction will be accomplished principally by decreasing the number of numerical parameters to be optimized without sacrificing accuracy. To this end, the negligible parameters will be identified and dropped by adopting the corresponding techniques of computer science. The correct behavior of the models for distorted structures will be ensured by developing new approaches that use a linear combination of functions rather than a single function as a starting point for the description of electronic states. Since the programming work associated with the implementation of the proposed schemes is very complex, the project will rely on the automated programming tools previously developed by the proposer. In addition to the outlined challenging tasks, the proposal aims to implement several more straightforward objectives. In particular, the high-accuracy calculations will be extended to molecular properties that are presently not available. Furthermore, the developed methods will be applied to real-life problems, especially in the field of spectroscopy and atmospheric chemistry.
Summary
Even today, quantum chemical calculations with experimental accuracy are only feasible for small molecules. This statement is especially true if the considered molecule is far from the equilibrium structure, where the overwhelming majority of quantum chemical models break down. The main purpose of this proposal is to develop new quantum chemical methods that are applicable to at least medium-sized molecules and simultaneously provide results sufficiently close to the experimental data and are capable of describing entire potential energy surfaces. The accuracy goal will be achieved through the reduction of the computational cost of high-precision quantum chemical calculations, which are currently practical for molecules of up to 15 atoms. The cost reduction will be accomplished principally by decreasing the number of numerical parameters to be optimized without sacrificing accuracy. To this end, the negligible parameters will be identified and dropped by adopting the corresponding techniques of computer science. The correct behavior of the models for distorted structures will be ensured by developing new approaches that use a linear combination of functions rather than a single function as a starting point for the description of electronic states. Since the programming work associated with the implementation of the proposed schemes is very complex, the project will rely on the automated programming tools previously developed by the proposer. In addition to the outlined challenging tasks, the proposal aims to implement several more straightforward objectives. In particular, the high-accuracy calculations will be extended to molecular properties that are presently not available. Furthermore, the developed methods will be applied to real-life problems, especially in the field of spectroscopy and atmospheric chemistry.
Max ERC Funding
500 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym HybridSolarFuels
Project Efficient Photoelectrochemical Transformation of CO2 to Useful Fuels on Nanostructured Hybrid Electrodes
Researcher (PI) Csaba JANAKY
Host Institution (HI) Szegedi Tudomanyegyetem - Hungarian-Netherlands School of Educational Management
Call Details Starting Grant (StG), PE4, ERC-2016-STG
Summary Given that CO2 is a greenhouse gas, using the energy of sunlight to convert CO2 to transportation fuels (such as methanol) represents a value-added approach to the simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Photoelectrochemistry has been proven to be a useful avenue for solar water splitting. CO2 reduction, however, is multi-electron in nature (e.g., 6 e- to methanol) with considerable kinetic barriers to electron transfer. It therefore requires the use of carefully designed electrode surfaces to accelerate e- transfer rates to levels that make practical sense. In addition, novel flow-cell configurations have to be designed to overcome mass transport limitations of this reaction.
We are going to design and assemble nanostructured hybrid materials to be simultaneously applied as both adsorber and cathode-material to photoelectrochemically convert CO2 to valuable liquid fuels. The three main goals of this project are to (i) gain fundamental understanding of morphological-, size-, and surface functional group effects on the photoelectrochemical (PEC) behavior at the nanoscale (ii) design and synthesize new functional hybrid materials for PEC CO2 reduction, (iii) develop flow-reactors for PEC CO2 reduction. Rationally designed hybrid nanostructures of large surface area p-type semiconductors (e.g., SiC, CuMO2, or CuPbI3) and N-containing conducting polymers (e.g., polyaniline-based custom designed polymers) will be responsible for: (i) higher photocurrents due to facile charge transfer and better light absorption (ii) higher selectivity towards the formation of liquid fuels due to the adsorption of CO2 on the photocathode (iii) better stability of the photocathode. The challenges are great, but the possible rewards are enormous: performing CO2 adsorption and reduction on the same system may lead to PEC cells which can be deployed directly at the source point of CO2, which would go well beyond the state-of-the-art.
Summary
Given that CO2 is a greenhouse gas, using the energy of sunlight to convert CO2 to transportation fuels (such as methanol) represents a value-added approach to the simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Photoelectrochemistry has been proven to be a useful avenue for solar water splitting. CO2 reduction, however, is multi-electron in nature (e.g., 6 e- to methanol) with considerable kinetic barriers to electron transfer. It therefore requires the use of carefully designed electrode surfaces to accelerate e- transfer rates to levels that make practical sense. In addition, novel flow-cell configurations have to be designed to overcome mass transport limitations of this reaction.
We are going to design and assemble nanostructured hybrid materials to be simultaneously applied as both adsorber and cathode-material to photoelectrochemically convert CO2 to valuable liquid fuels. The three main goals of this project are to (i) gain fundamental understanding of morphological-, size-, and surface functional group effects on the photoelectrochemical (PEC) behavior at the nanoscale (ii) design and synthesize new functional hybrid materials for PEC CO2 reduction, (iii) develop flow-reactors for PEC CO2 reduction. Rationally designed hybrid nanostructures of large surface area p-type semiconductors (e.g., SiC, CuMO2, or CuPbI3) and N-containing conducting polymers (e.g., polyaniline-based custom designed polymers) will be responsible for: (i) higher photocurrents due to facile charge transfer and better light absorption (ii) higher selectivity towards the formation of liquid fuels due to the adsorption of CO2 on the photocathode (iii) better stability of the photocathode. The challenges are great, but the possible rewards are enormous: performing CO2 adsorption and reduction on the same system may lead to PEC cells which can be deployed directly at the source point of CO2, which would go well beyond the state-of-the-art.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym MOLINFLAM
Project Molecular dissection of inflammatory pathways
Researcher (PI) Attila Mocsai
Host Institution (HI) SEMMELWEIS EGYETEM
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary Inflammatory diseases are highly prevalent, often chronic diseases that cause diminished quality of life and are connected with major causes of death in Western societies. Despite their societal impact, their pathomechanism is incompletely understood, hindering development of novel therapeutic strategies. In particular, little is known about the intracellular signal transduction processes involved in the tissue destruction phase of aggressive autoimmune diseases such as rheumatoid arthritis. The present proposal aims to clarify this issue using in vivo and in vitro studies on genetically manipulated mice. During the proposed studies, mice deficient in various signal transduction molecules such as Syk, PLCg2, Gab2 and p190 RhoGAPs will be used to test their contribution to inflammatory responses. In vitro studies will test the activation of major effector cells of inflammation (neutrophils, macrophages and osteoclasts) while in vivo studies will utilize mouse models such as autoantibody- and cytokine-induced inflammatory arthritis or autoantibody-induced glomerulonephritis. Further studies will be performed to test the contribution of the above signaling molecules to disease pathogenesis in a lineage-restricted manner, using the Cre-lox approach. Finally, wild type and mutant versions of the signaling molecules tested will be retrovirally re-expressed into the relevant knockout hematopoietic stem cells in vivo to allow structure-function studies during in vivo inflammation. Two novel transgenic strains and a knock-in (floxed) mutant will also be generated during the course of the project. Using state-of-the-art approaches and techniques, this project will provide information at unprecedented molecular detail on signal transduction mechanisms involved in inflammatory diseases, and is expected to point to possible future targets of novel anti-inflammatory therapies.
Summary
Inflammatory diseases are highly prevalent, often chronic diseases that cause diminished quality of life and are connected with major causes of death in Western societies. Despite their societal impact, their pathomechanism is incompletely understood, hindering development of novel therapeutic strategies. In particular, little is known about the intracellular signal transduction processes involved in the tissue destruction phase of aggressive autoimmune diseases such as rheumatoid arthritis. The present proposal aims to clarify this issue using in vivo and in vitro studies on genetically manipulated mice. During the proposed studies, mice deficient in various signal transduction molecules such as Syk, PLCg2, Gab2 and p190 RhoGAPs will be used to test their contribution to inflammatory responses. In vitro studies will test the activation of major effector cells of inflammation (neutrophils, macrophages and osteoclasts) while in vivo studies will utilize mouse models such as autoantibody- and cytokine-induced inflammatory arthritis or autoantibody-induced glomerulonephritis. Further studies will be performed to test the contribution of the above signaling molecules to disease pathogenesis in a lineage-restricted manner, using the Cre-lox approach. Finally, wild type and mutant versions of the signaling molecules tested will be retrovirally re-expressed into the relevant knockout hematopoietic stem cells in vivo to allow structure-function studies during in vivo inflammation. Two novel transgenic strains and a knock-in (floxed) mutant will also be generated during the course of the project. Using state-of-the-art approaches and techniques, this project will provide information at unprecedented molecular detail on signal transduction mechanisms involved in inflammatory diseases, and is expected to point to possible future targets of novel anti-inflammatory therapies.
Max ERC Funding
1 200 000 €
Duration
Start date: 2008-10-01, End date: 2014-03-31