Project acronym ANT
Project Automata in Number Theory
Researcher (PI) Boris Adamczewski
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects (formal language theory, decidability, complexity) and on the other for practical applications (parsing). In number theory, finite automata are mainly used as simple devices for generating sequences of symbols over a finite set (e.g., digital representations of real numbers), and for recognizing some sets of integers or more generally of finitely generated abelian groups or monoids. One of the main features of these automatic structures comes from the fact that they are highly ordered without necessarily being trivial (i.e., periodic). With their rich fractal nature, they lie somewhere between order and chaos, even if, in most respects, their rigidity prevails. Over the last few years, several ground-breaking results have lead to a great renewed interest in the study of automatic structures in arithmetics.
A primary objective of the ANT project is to exploit this opportunity by developing new directions and interactions between automata and number theory. In this proposal, we outline three lines of research concerning fundamental number theoretical problems that have baffled mathematicians for decades. They include the study of integer base expansions of classical constants, of arithmetical linear differential equations and their link with enumerative combinatorics, and of arithmetics in positive characteristic. At first glance, these topics may seem unrelated, but, surprisingly enough, the theory of finite automata will serve as a natural guideline. We stress that this new point of view on classical questions is a key part of our methodology: we aim at creating a powerful synergy between the different approaches we propose to develop, placing automata theory and related methods at the heart of the subject. This project provides a unique opportunity to create the first international team focusing on these different problems as a whole.
Summary
Finite automata are fundamental objects in Computer Science, of great importance on one hand for theoretical aspects (formal language theory, decidability, complexity) and on the other for practical applications (parsing). In number theory, finite automata are mainly used as simple devices for generating sequences of symbols over a finite set (e.g., digital representations of real numbers), and for recognizing some sets of integers or more generally of finitely generated abelian groups or monoids. One of the main features of these automatic structures comes from the fact that they are highly ordered without necessarily being trivial (i.e., periodic). With their rich fractal nature, they lie somewhere between order and chaos, even if, in most respects, their rigidity prevails. Over the last few years, several ground-breaking results have lead to a great renewed interest in the study of automatic structures in arithmetics.
A primary objective of the ANT project is to exploit this opportunity by developing new directions and interactions between automata and number theory. In this proposal, we outline three lines of research concerning fundamental number theoretical problems that have baffled mathematicians for decades. They include the study of integer base expansions of classical constants, of arithmetical linear differential equations and their link with enumerative combinatorics, and of arithmetics in positive characteristic. At first glance, these topics may seem unrelated, but, surprisingly enough, the theory of finite automata will serve as a natural guideline. We stress that this new point of view on classical questions is a key part of our methodology: we aim at creating a powerful synergy between the different approaches we propose to develop, placing automata theory and related methods at the heart of the subject. This project provides a unique opportunity to create the first international team focusing on these different problems as a whole.
Max ERC Funding
1 438 745 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BG-BB-AS
Project Birational Geometry, B-branes and Artin Stacks
Researcher (PI) Edward Paul Segal
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE1, ERC-2016-COG
Summary Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Summary
Derived categories of coherent sheaves on a variety are a fundamental tool in algebraic geometry. They also arise in String Theory, as the category of B-branes in a quantum field theory whose target space is the variety. This connection to physics has been extraordinarily fruitful, providing deep insights and conjectures.
An Artin stack is a sophisticated generalization of a variety, they encode the idea of equivariant geometry. A simple example is a vector space carrying a linear action of a Lie group. In String Theory this data defines a Gauged Linear Sigma Model, which is a basic tool in the subject. A GLSM should also give rise to a category of B-branes, but surprisingly it is not yet understood what this should be. An overarching goal of this project is to develop an understanding of this category (more accurately, system of categories), and to extend this understanding to more general Artin stacks.
The basic importance of this question is that in certain limits a GLSM reduces to a sigma model, whose target is a quotient of the vector space by the group. This quotient must be taken using Geometric Invariant Theory. Thus this project is intimately connected with the question of how derived categories change under variation-of-GIT, and birational maps in general.
For GLSMs with abelian groups this approach has already produced spectacular results, in the non-abelian case we understand only a few remarkable examples. We will develop these examples into a wide-ranging general theory.
Our key objectives are to:
- Provide powerful new tools for controlling the behaviour of derived categories under birational maps.
- Understand the category of B-branes on a large class of Artin stacks.
- Prove and apply a striking new duality between GLSMs.
- Construct completely new symmetries of derived categories.
Max ERC Funding
1 358 925 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BHSandAADS
Project The Black Hole Stability Problem and the Analysis of asymptotically anti-de Sitter spacetimes
Researcher (PI) Gustav HOLZEGEL
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Summary
The present proposal is concerned with the analysis of the Einstein equations of general relativity, a non-linear system of geometric partial differential equations describing phenomena from the bending of light to the dynamics of black holes. The theory has recently been confirmed in a spectacular fashion with the detection of gravitational waves.
The main objective of the proposal is to consolidate my research group based at Imperial College by developing novel mathematical techniques that will fundamentally advance our understanding of the Einstein equations. Here the proposal builds on mathematical progress in the last decade resulting from achievements in the fields of partial differential equations, differential geometry, microlocal analysis and theoretical physics.
The Black Hole Stability Problem
A major open problem in general relativity is to prove the non-linear stability of the Kerr family of black hole solutions. Recent advances in the problem of linear stability made by the PI and collaborators open the door to finally address a complete resolution of the stability problem. In this proposal we will describe what non-linear techniques will need to be developed in addition to achieve this goal. A successful resolution of this program would conclude an almost 50-year-old problem.
The Analysis of asymptotically anti-de Sitter (aAdS) spacetimes
We propose to prove the stability of pure AdS if so-called dissipative boundary conditions are imposed at the boundary. This result would align with the well-known stability results for the other maximally-symmetric solutions of the Einstein equations, Minkowski space and de Sitter space.
As a second -- related -- theme we propose to formulate and prove a unique continuation principle for the full non-linear Einstein equations on aAdS spacetimes. This goal will be achieved by advancing techniques that have recently been developed by the PI and collaborators for non-linear wave equations on aAdS spacetimes.
Max ERC Funding
1 999 755 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BirNonArchGeom
Project Birational and non-archimedean geometries
Researcher (PI) Michael TEMKIN
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), PE1, ERC-2017-COG
Summary Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Summary
Resolution of singularities is one of classical, central and difficult areas of algebraic geometry, with a centennial history of intensive research and contributions of such great names as Zariski, Hironaka and Abhyankar. Nowadays, desingularization of schemes of characteristic zero is very well understood, while semistable reduction of morphisms and desingularization in positive characteristic are still waiting for major breakthroughs. In addition to the classical techniques with their triumph in characteristic zero, modern resolution of singularities includes de Jong's method of alterations, toroidal methods, formal analytic and non-archimedean methods, etc.
The aim of the proposed research is to study nearly all directions in resolution of singularities and semistable reduction, as well as the wild ramification phenomena, which are probably the main obstacle to transfer methods from characteristic zero to positive characteristic.
The methods of algebraic and non-archimedean geometries are intertwined in the proposal, though algebraic geometry is somewhat dominating, especially due to the new stack-theoretic techniques. It seems very probable that increasing the symbiosis between birational and non-archimedean geometries will be one of by-products of this research.
Max ERC Funding
1 365 600 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym BOPNIE
Project Boundary value problems for nonlinear integrable equations
Researcher (PI) Jonatan Carl Anders Lenells
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Summary
The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerdà
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CAVE
Project Challenges and Advancements in Virtual Elements
Researcher (PI) Lourenco Beirao da veiga
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Summary
The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Max ERC Funding
980 634 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym CC
Project Combinatorial Construction
Researcher (PI) Peter Keevash
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Summary
Combinatorial Construction is a mathematical challenge with many applications. Examples include the construction of networks that are very sparse but highly connected, or codes that can correct many transmission errors with little overhead in communication costs. For a general class of combinatorial objects, and some desirable property, the fundamental question in Combinatorial Construction is to demonstrate the existence of an object with the property, preferably via an explicit algorithmic construction. Thus it is ubiquitous in Computer Science, including applications to expanders, sorting networks, distributed communication, data storage, codes, cryptography and derandomisation. In popular culture it appears as the unsolved `lottery problem' of determining the minimum number of tickets that guarantee a prize. In a recent preprint I prove the Existence Conjecture for combinatorial designs, via a new method of Randomised Algebraic Constructions; this result has already attracted considerable attention in the mathematical community. The significance is not only in the solution of a problem posed by Steiner in 1852, but also in the discovery of a powerful new method, that promises to have many further applications in Combinatorics, and more widely in Mathematics and Theoretical Computer Science. I am now poised to resolve many other problems of combinatorial construction.
Max ERC Funding
1 706 729 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym CHRiSHarMa
Project Commutators, Hilbert and Riesz transforms,Shifts, Harmonic extensions and Martingales
Researcher (PI) Stefanie Petermichl
Host Institution (HI) UNIVERSITE PAUL SABATIER TOULOUSE III
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed new
light on characterizations for boundedness of multi-parameter versions of
classical Hankel operators in a variety of settings. The classical Nehari's theorem on
the disk (1957) has found an important generalization to Hilbert space
valued functions, known as Page's theorem. A relevant extension of Nehari's
theorem to the bi-disk had been a long standing problem, finally solved in
2000, through novel harmonic analysis methods. It's operator analog remains
unknown and constitutes part of this proposal.
Sharp estimates for Calderon-Zygmund operators and martingale
inequalities.
We make use of the interplay between objects central to
Harmonic analysis, such as the Hilbert transform, and objects central to
probability theory, martingales. This connection has seen many faces, such as
in the UMD space classification by Bourgain and Burkholder or in the formula
of Gundy-Varapoulos, that uses orthogonal martingales to model the behavior of
the Hilbert transform. Martingale methods in combination with optimal control
have advanced an array of questions in harmonic analysis in recent years. In
this proposal we wish to continue this direction as well as exploit advances
in dyadic harmonic analysis for use in questions central to probability. There
is some focus on weighted estimates in a non-commutative and scalar setting, in the understanding of discretizations
of classical operators, such as the Hilbert transform and their role played
when acting on functions defined on discrete groups. From a martingale
standpoint, jump processes come into play. Another direction is the use of
numerical methods in combination with harmonic analysis achievements for martingale estimates.
Summary
This project aims to develop two arrays of questions at the heart of harmonic
analysis, probability and operator theory:
Multi-parameter harmonic analysis.
Through the use of wavelet methods in harmonic analysis, we plan to shed new
light on characterizations for boundedness of multi-parameter versions of
classical Hankel operators in a variety of settings. The classical Nehari's theorem on
the disk (1957) has found an important generalization to Hilbert space
valued functions, known as Page's theorem. A relevant extension of Nehari's
theorem to the bi-disk had been a long standing problem, finally solved in
2000, through novel harmonic analysis methods. It's operator analog remains
unknown and constitutes part of this proposal.
Sharp estimates for Calderon-Zygmund operators and martingale
inequalities.
We make use of the interplay between objects central to
Harmonic analysis, such as the Hilbert transform, and objects central to
probability theory, martingales. This connection has seen many faces, such as
in the UMD space classification by Bourgain and Burkholder or in the formula
of Gundy-Varapoulos, that uses orthogonal martingales to model the behavior of
the Hilbert transform. Martingale methods in combination with optimal control
have advanced an array of questions in harmonic analysis in recent years. In
this proposal we wish to continue this direction as well as exploit advances
in dyadic harmonic analysis for use in questions central to probability. There
is some focus on weighted estimates in a non-commutative and scalar setting, in the understanding of discretizations
of classical operators, such as the Hilbert transform and their role played
when acting on functions defined on discrete groups. From a martingale
standpoint, jump processes come into play. Another direction is the use of
numerical methods in combination with harmonic analysis achievements for martingale estimates.
Max ERC Funding
1 523 963 €
Duration
Start date: 2017-01-01, End date: 2021-12-31