Project acronym FANOEC
Project Fundamentals and Applications of Inorganic Oxygen Evolution Catalysts
Researcher (PI) Xile Hu
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The oxygen evolution reaction (OER) is the key reaction to enable the storage of solar energy in the form of hydrogen fuel through water splitting. Efficient, Earth-abundant, and robust OER catalysts are required for a large-scale and cost-effective production of solar hydrogen. While OER catalysts based on metal oxides exhibit promising activity and stability, their rational design and developments are challenging due to the heterogeneous nature of the catalysts. Here I propose a project to (i) understand OER on metal oxides at the molecular level and engineer catalytic sites at the atomic scale; (ii) develop and apply practical OER catalysts for high-efficiency water splitting in electrochemical and photoelectrochemical devices. The first general objective will be obtained by using 2-dimensional metal oxide nanosheets as a platform to probe the intrinsic activity and active sites of metal oxide OER catalysts, as well as by developing sub-nanocluster and single-atom metal oxide OER catalysis. The second general objective will be obtained by establishing new and better synthetic methods, developing new classes of catalysts, and applying catalysts in innovative water splitting devices.
The project employs methodologies from many different disciplines in chemistry and materials science. Synthesis is the starting point and the backbone of the project, and the synthetic efforts are complemented and valorised by state-of-the-art characterization and catalytic tests. The project will not only yield significant fundamental insights and knowledge in heterogeneous OER catalysis, but also produce functional and economically viable catalysts for solar fuel production.
Summary
The oxygen evolution reaction (OER) is the key reaction to enable the storage of solar energy in the form of hydrogen fuel through water splitting. Efficient, Earth-abundant, and robust OER catalysts are required for a large-scale and cost-effective production of solar hydrogen. While OER catalysts based on metal oxides exhibit promising activity and stability, their rational design and developments are challenging due to the heterogeneous nature of the catalysts. Here I propose a project to (i) understand OER on metal oxides at the molecular level and engineer catalytic sites at the atomic scale; (ii) develop and apply practical OER catalysts for high-efficiency water splitting in electrochemical and photoelectrochemical devices. The first general objective will be obtained by using 2-dimensional metal oxide nanosheets as a platform to probe the intrinsic activity and active sites of metal oxide OER catalysts, as well as by developing sub-nanocluster and single-atom metal oxide OER catalysis. The second general objective will be obtained by establishing new and better synthetic methods, developing new classes of catalysts, and applying catalysts in innovative water splitting devices.
The project employs methodologies from many different disciplines in chemistry and materials science. Synthesis is the starting point and the backbone of the project, and the synthetic efforts are complemented and valorised by state-of-the-art characterization and catalytic tests. The project will not only yield significant fundamental insights and knowledge in heterogeneous OER catalysis, but also produce functional and economically viable catalysts for solar fuel production.
Max ERC Funding
2 199 983 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym REALNANO
Project 3D Structure of Nanomaterials under Realistic Conditions
Researcher (PI) Sara BALS
Host Institution (HI) UNIVERSITEIT ANTWERPEN
Call Details Consolidator Grant (CoG), PE5, ERC-2018-COG
Summary The properties of nanomaterials are essentially determined by their 3D structure. Electron tomography enables one to measure the morphology and composition of nanostructures in 3D, even at atomic resolution. Unfortunately, all these measurements are performed at room temperature and in ultra-high vacuum, which are conditions that are completely irrelevant for the use of nanoparticles in real applications! Moreover, nanoparticles often have ligands at their surface, which form the interface to the environment. These ligands are mostly neglected in imaging, although they strongly influence the growth, thermal stability and drive self-assembly.
I will develop innovative and quantitative 3D characterisation tools, compatible with the fast changes of nanomaterials that occur in a realistic thermal and gaseous environment. To visualise surface ligands, I will combine direct electron detection with novel exit wave reconstruction techniques.
Tracking the 3D structure of nanomaterials in a relevant environment is extremely challenging and ambitious. However, our preliminary experiments demonstrate the enormous impact. We will be able to perform a dynamic characterisation of shape changes of nanoparticles. This is important to improve thermal stability during drug delivery, sensing, data storage or hyperthermic cancer treatment. We will provide quantitative 3D measurements of the coordination numbers of the surface atoms of catalytic nanoparticles and follow the motion of individual atoms live during catalysis. By visualising surface ligands, we will understand their fundamental influence on particle shape and during self-assembly.
This program will be the start of a completely new research line in the field of 3D imaging at the atomic scale. The outcome will certainly boost the design and performance of nanomaterials. This is not only of importance at a fundamental level, but is a prerequisite for the incorporation of nanomaterials in our future technology.
Summary
The properties of nanomaterials are essentially determined by their 3D structure. Electron tomography enables one to measure the morphology and composition of nanostructures in 3D, even at atomic resolution. Unfortunately, all these measurements are performed at room temperature and in ultra-high vacuum, which are conditions that are completely irrelevant for the use of nanoparticles in real applications! Moreover, nanoparticles often have ligands at their surface, which form the interface to the environment. These ligands are mostly neglected in imaging, although they strongly influence the growth, thermal stability and drive self-assembly.
I will develop innovative and quantitative 3D characterisation tools, compatible with the fast changes of nanomaterials that occur in a realistic thermal and gaseous environment. To visualise surface ligands, I will combine direct electron detection with novel exit wave reconstruction techniques.
Tracking the 3D structure of nanomaterials in a relevant environment is extremely challenging and ambitious. However, our preliminary experiments demonstrate the enormous impact. We will be able to perform a dynamic characterisation of shape changes of nanoparticles. This is important to improve thermal stability during drug delivery, sensing, data storage or hyperthermic cancer treatment. We will provide quantitative 3D measurements of the coordination numbers of the surface atoms of catalytic nanoparticles and follow the motion of individual atoms live during catalysis. By visualising surface ligands, we will understand their fundamental influence on particle shape and during self-assembly.
This program will be the start of a completely new research line in the field of 3D imaging at the atomic scale. The outcome will certainly boost the design and performance of nanomaterials. This is not only of importance at a fundamental level, but is a prerequisite for the incorporation of nanomaterials in our future technology.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym SCALE-HALO
Project Multiscale chemical engineering of functional metal halides
Researcher (PI) Maksym KOVALENKO
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE5, ERC-2018-COG
Summary SCALE-HALO proposes a research program that will advance the development of highly luminescent molecular and solid-state compounds by focusing on the emerging, vast, and rather underexplored compositional and structural spaces comprised of metals and halogens, i.e., metal halides (MHs). SCALE-HALO is motivated by the eventual utility of MHs as versatile photonic sources in modern appliances (e.g., displays and lighting) and in future quantum technologies. The recent success of lead halide perovskites in optoelectronics inspires broader exploration of the chemistry and photophysics of MHs. The clear objective is to determine factors controlling the spectral widths and emission peak wavelengths, Stokes shifts, radiative lifetimes, and quantum efficiencies. In addition to the need to discover new chemically robust and nontoxic MH emitters, there is also a critical need to engineer material morphologies suitable for specific applications (e.g., thin films, nanocrystals, composites, etc.) Ensuring the thermal and environmental stabilities are especially important efforts. SCALE-HALO will therefore encompass the chemical engineering of MHs at the atomic scale (e.g., new compounds), nanoscale (e.g., synthesis of nanostructures and their surface chemistry), and mesoscale (e.g., nanostructure superlattices and composites). Furthermore, modern exploratory syntheses will be accelerated with automated high-throughput methods (e.g., robotics and microfluidics). The characterization toolbox for probing the local atomistic structure will be expanded with multinuclear NMR spectroscopy. The individual and collective optical properties of MH nanostructures and their periodic assemblies will be established and rationalized. Toward diverse real-world applications, first trials will be undertaken to evaluate the potentials of novel MH materials for LCD displays, solid-state lighting and light-emitting diodes.
Summary
SCALE-HALO proposes a research program that will advance the development of highly luminescent molecular and solid-state compounds by focusing on the emerging, vast, and rather underexplored compositional and structural spaces comprised of metals and halogens, i.e., metal halides (MHs). SCALE-HALO is motivated by the eventual utility of MHs as versatile photonic sources in modern appliances (e.g., displays and lighting) and in future quantum technologies. The recent success of lead halide perovskites in optoelectronics inspires broader exploration of the chemistry and photophysics of MHs. The clear objective is to determine factors controlling the spectral widths and emission peak wavelengths, Stokes shifts, radiative lifetimes, and quantum efficiencies. In addition to the need to discover new chemically robust and nontoxic MH emitters, there is also a critical need to engineer material morphologies suitable for specific applications (e.g., thin films, nanocrystals, composites, etc.) Ensuring the thermal and environmental stabilities are especially important efforts. SCALE-HALO will therefore encompass the chemical engineering of MHs at the atomic scale (e.g., new compounds), nanoscale (e.g., synthesis of nanostructures and their surface chemistry), and mesoscale (e.g., nanostructure superlattices and composites). Furthermore, modern exploratory syntheses will be accelerated with automated high-throughput methods (e.g., robotics and microfluidics). The characterization toolbox for probing the local atomistic structure will be expanded with multinuclear NMR spectroscopy. The individual and collective optical properties of MH nanostructures and their periodic assemblies will be established and rationalized. Toward diverse real-world applications, first trials will be undertaken to evaluate the potentials of novel MH materials for LCD displays, solid-state lighting and light-emitting diodes.
Max ERC Funding
1 999 950 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym SeleCHEM
Project Overcoming the Selectivity Challenge in Chemistry and Chemical Biology via Innovative Tethering Strategies
Researcher (PI) Jerome WASER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary In the last two centuries, synthetic organic chemistry has undergone an unprecedented revolution. The ability to understand and modify the molecular structure of matter has changed our life in many areas, such as medicine, agriculture or commodity materials. These major successes gave the impression that synthetic chemistry is a mature field. However, this impression is completely misleading, as current synthetic methods still lack the selectivity needed for the modification of complex molecules. Both selecting between different reactive groups and functionalizing inert bonds in their presence represent formidable challenges.
In this project, we propose to develop highly selective “molecular tethers” for the functionalization of both natural/synthetic organic compounds and biomolecules. The envisioned tethers are bifunctional small organic molecules having three fundamental properties:
1) A “biting end” with unique reactivity to be selectively installed in situ onto naturally occurring thiols, alcohols and amines. We will use tethers based on acetals and hypervalent iodine reagents.
2) A “functional end”, whose reactivity can be revealed “at will” to functionalize bonds that cannot be accessed with the current state of the art of synthetic chemistry, especially inert C-H and C=C bonds.
3) Being traceless, meaning that they can be removed easily once the desired functionalization has been achieved.
The main impact of this project will be in fundamental synthetic organic chemistry, as it will contribute to overcoming major selectivity hurdles in the functionalization of complex molecules. It will therefore result in faster progress in all the fields depending on synthetic molecules, such as medicine, agriculture or materials. A more efficient functionalization of biomolecules will allow us to soften the boundaries between synthetic chemistry and biology, leading to major progress in our understanding of living systems and our ability to modify them.
Summary
In the last two centuries, synthetic organic chemistry has undergone an unprecedented revolution. The ability to understand and modify the molecular structure of matter has changed our life in many areas, such as medicine, agriculture or commodity materials. These major successes gave the impression that synthetic chemistry is a mature field. However, this impression is completely misleading, as current synthetic methods still lack the selectivity needed for the modification of complex molecules. Both selecting between different reactive groups and functionalizing inert bonds in their presence represent formidable challenges.
In this project, we propose to develop highly selective “molecular tethers” for the functionalization of both natural/synthetic organic compounds and biomolecules. The envisioned tethers are bifunctional small organic molecules having three fundamental properties:
1) A “biting end” with unique reactivity to be selectively installed in situ onto naturally occurring thiols, alcohols and amines. We will use tethers based on acetals and hypervalent iodine reagents.
2) A “functional end”, whose reactivity can be revealed “at will” to functionalize bonds that cannot be accessed with the current state of the art of synthetic chemistry, especially inert C-H and C=C bonds.
3) Being traceless, meaning that they can be removed easily once the desired functionalization has been achieved.
The main impact of this project will be in fundamental synthetic organic chemistry, as it will contribute to overcoming major selectivity hurdles in the functionalization of complex molecules. It will therefore result in faster progress in all the fields depending on synthetic molecules, such as medicine, agriculture or materials. A more efficient functionalization of biomolecules will allow us to soften the boundaries between synthetic chemistry and biology, leading to major progress in our understanding of living systems and our ability to modify them.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym SMAC-MC
Project Small Molecule Activation by Main-Group Compounds
Researcher (PI) Heikki Markus Tuononen
Host Institution (HI) JYVASKYLAN YLIOPISTO
Call Details Consolidator Grant (CoG), PE5, ERC-2017-COG
Summary Many basic chemical processes involve the activation of small unreactive molecules, such as hydrogen, nitrogen, ammonia, water and carbon dioxide, by transition-metal-based catalysts or by enzymes. This proposal focusses on the interesting and recently observed possibility to perform similar transformations with main-group compounds that consist entirely of cheap earth-abundant elements. The proposed research is split into four work packages of which the first investigates the mechanisms by which different main-group singlet diradicaloids activate small molecules and how their reactivity correlates with their radical character. The second work package focusses on small molecule activation using main-group metalloid clusters, a new emerging field that we have recently pioneered, and compares the reactivity determined for main-group species with that known for related transition-metal clusters. Investigations in the third work package concentrate on the electrochemical reduction of carbon dioxide and on the possibility to lower the required overpotential with frustrated Lewis pairs that readily form adducts with small molecules. The fourth work package revolves around activating small molecules by diborenes and, in particular, observing novel reactivity in situ, that is, before the reactive diborene is trapped with a suitable Lewis base. Considered as a whole, the planned initiatives will enable significant breakthroughs in the design of novel main-group element based compounds for the activation of small molecules. The research is not only of fundamental scientific importance but also of potential practical value as many main-group systems, such as frustrated Lewis pairs, are currently being examined as novel catalysts. An ERC consolidator grant would significantly strengthen my position in this interesting subfield of inorganic chemistry and give my research group practical means to continue performing cutting-edge research.
Summary
Many basic chemical processes involve the activation of small unreactive molecules, such as hydrogen, nitrogen, ammonia, water and carbon dioxide, by transition-metal-based catalysts or by enzymes. This proposal focusses on the interesting and recently observed possibility to perform similar transformations with main-group compounds that consist entirely of cheap earth-abundant elements. The proposed research is split into four work packages of which the first investigates the mechanisms by which different main-group singlet diradicaloids activate small molecules and how their reactivity correlates with their radical character. The second work package focusses on small molecule activation using main-group metalloid clusters, a new emerging field that we have recently pioneered, and compares the reactivity determined for main-group species with that known for related transition-metal clusters. Investigations in the third work package concentrate on the electrochemical reduction of carbon dioxide and on the possibility to lower the required overpotential with frustrated Lewis pairs that readily form adducts with small molecules. The fourth work package revolves around activating small molecules by diborenes and, in particular, observing novel reactivity in situ, that is, before the reactive diborene is trapped with a suitable Lewis base. Considered as a whole, the planned initiatives will enable significant breakthroughs in the design of novel main-group element based compounds for the activation of small molecules. The research is not only of fundamental scientific importance but also of potential practical value as many main-group systems, such as frustrated Lewis pairs, are currently being examined as novel catalysts. An ERC consolidator grant would significantly strengthen my position in this interesting subfield of inorganic chemistry and give my research group practical means to continue performing cutting-edge research.
Max ERC Funding
1 424 190 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym synMICs
Project Exploiting Synergistic Properties of Mesoionic Carbene Complexes: Teaching Rusty Metals Challenging Catalysis
Researcher (PI) Martin Albrecht
Host Institution (HI) UNIVERSITAET BERN
Call Details Consolidator Grant (CoG), PE5, ERC-2013-CoG
Summary The non-innocence of specific ligands in transition metal complexes is well-documented. For example, mesoionic carbenes engage in bond activation processes via reversible hydrogen capture. Such cooperativity between the metal center and the ligand flattens the potential energy surface of a catalytic reaction and hence rises the competence of the catalyst, thus entailing higher turnover numbers as well as the conversion of more challenging substrates. Likewise, such cooperativity is expected to enhance the catalytic activity of metal centers that are typically not considered to be catalytically very active, such as the ‘rusty’ first row transition metals (Mn, Fe, Ni). Surprisingly, however, this concept has largely been overlooked when designing catalytic transformations based on these earth-abundant and low-cost transition metals. This project will exploit the synergistic potential of mesoionic carbenes as synthetically highly versatile and actively supporting ligands to access a new generation of sustainable high-performance catalysts based on Me, Fe, and Ni for challenging redox transformations such as dehydrogenative oxidations. Specificlly, 1,2,3-triazolylidenes, which support ligand-metal cooperativity through their mesoionic character, will be utilized for (transient) storage/release of protons and electrons. Apart from enabling challenging transformations — with obvious impact on synthetic methodology, energy conversion, and molecular electronics — this project will break into new grounds in catalyst design that will be widely applicable as a new paradigm. Furthermore, this project will capitalize on the unique synthetic versatility of triazolylidene precursors and the opportunity to combine different functional entities such as carbohydrates, surfactants, or dyes with an organometallic entity, thus providing a straightforward approach to new classes of multifunctional materials for application in therapeutics and diagnostics, or as smart surfaces.
Summary
The non-innocence of specific ligands in transition metal complexes is well-documented. For example, mesoionic carbenes engage in bond activation processes via reversible hydrogen capture. Such cooperativity between the metal center and the ligand flattens the potential energy surface of a catalytic reaction and hence rises the competence of the catalyst, thus entailing higher turnover numbers as well as the conversion of more challenging substrates. Likewise, such cooperativity is expected to enhance the catalytic activity of metal centers that are typically not considered to be catalytically very active, such as the ‘rusty’ first row transition metals (Mn, Fe, Ni). Surprisingly, however, this concept has largely been overlooked when designing catalytic transformations based on these earth-abundant and low-cost transition metals. This project will exploit the synergistic potential of mesoionic carbenes as synthetically highly versatile and actively supporting ligands to access a new generation of sustainable high-performance catalysts based on Me, Fe, and Ni for challenging redox transformations such as dehydrogenative oxidations. Specificlly, 1,2,3-triazolylidenes, which support ligand-metal cooperativity through their mesoionic character, will be utilized for (transient) storage/release of protons and electrons. Apart from enabling challenging transformations — with obvious impact on synthetic methodology, energy conversion, and molecular electronics — this project will break into new grounds in catalyst design that will be widely applicable as a new paradigm. Furthermore, this project will capitalize on the unique synthetic versatility of triazolylidene precursors and the opportunity to combine different functional entities such as carbohydrates, surfactants, or dyes with an organometallic entity, thus providing a straightforward approach to new classes of multifunctional materials for application in therapeutics and diagnostics, or as smart surfaces.
Max ERC Funding
2 111 111 €
Duration
Start date: 2015-02-01, End date: 2020-01-31