Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym BEEHIVE
Project Bridging the Evolution and Epidemiology of HIV in Europe
Researcher (PI) Christopher Fraser
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Summary
The aim of the BEEHIVE project is to generate novel insight into HIV biology, evolution and epidemiology, leveraging next-generation high-throughput sequencing and bioinformatics to produce and analyse whole-genomes of viruses from approximately 3,000 European HIV-1 infected patients. These patients have known dates of infection spread over the last 25 years, good clinical follow up, and a wide range of clinical prognostic indicators and outcomes. The primary objective is to discover the viral genetic determinants of severity of infection and set-point viral load. This primary objective is high-risk & blue-skies: there is ample indirect evidence of polymorphisms that alter virulence, but they have never been identified, and it is not known how easy they are to discover. However, the project is also high-reward: it could lead to a substantial shift in the understanding of HIV disease.
Technologically, the BEEHIVE project will deliver new approaches for undertaking whole genome association studies on RNA viruses, including delivering an innovative high-throughput bioinformatics pipeline for handling genetically diverse viral quasi-species data (with viral diversity both within and between infected patients).
The project also includes secondary and tertiary objectives that address critical open questions in HIV epidemiology and evolution. The secondary objective is to use viral genetic sequences allied to mathematical epidemic models to better understand the resurgent European epidemic amongst high-risk groups, especially men who have sex with men. The aim will not just be to establish who is at risk of infection, which is known from conventional epidemiological approaches, but also to characterise the risk factors for onwards transmission of the virus. Tertiary objectives involve understanding the relationship between the genetic diversity within viral samples, indicative of on-going evolution or dual infections, to clinical outcomes.
Max ERC Funding
2 499 739 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym BIOSYNCEN
Project Dissection of centromeric chromatin and components: A biosynthetic approach
Researcher (PI) Patrick Heun
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Summary
The centromere is one of the most important chromosomal elements. It is required for proper chromosome segregation in mitosis and meiosis and readily recognizable as the primary constriction of mitotic chromosomes. Proper centromere function is essential to ensure genome stability; therefore understanding centromere identity is directly relevant to cancer biology and gene therapy. How centromeres are established and maintained is however still an open question in the field. In most organisms this appears to be regulated by an epigenetic mechanism. The key candidate for such an epigenetic mark is CENH3 (CENP-A in mammals, CID in Drosophila), a centromere-specific histone H3 variant that is essential for centromere function and exclusively found in the nucleosomes of centromeric chromatin. Using a biosynthetic approach of force-targeting CENH3 in Drosophila to non-centromeric DNA, we were able to induce centromere function and demonstrate that CENH3 is sufficient to determine centromere identity. Here we propose to move this experimental setup across evolutionary boundaries into human cells to develop improved human artificial chromosomes (HACs). We will make further use of this unique setup to dissect the function of targeted CENH3 both in Drosophila and human cells. Contributing centromeric components and histone modifications of centromeric chromatin will be characterized in detail by mass spectroscopy in Drosophila. Finally we are proposing to develop a technique that allows high-resolution mapping of proteins on repetitive DNA to help further characterizing known and novel centromere components. This will be achieved by combining two independently established techniques: DNA methylation and DNA fiber combing. This ambitious proposal will significantly advance our understanding of how centromeres are determined and help the development of improved HACs for therapeutic applications in the future.
Max ERC Funding
1 755 960 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym CellKarma
Project Dissecting the regulatory logic of cell fate reprogramming through integrative and single cell genomics
Researcher (PI) Davide CACCHIARELLI
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary The concept that any cell type, upon delivery of the right “cocktail” of transcription factors, can acquire an identity that otherwise it would never achieve, revolutionized the way we approach the study of developmental biology. In light of this, the discovery of induced pluripotent stem cells (IPSCs) and cell fate conversion approaches stimulated new research directions into human regenerative biology. However, the chance to successfully develop patient-tailored therapies is still very limited because reprogramming technologies are applied without a comprehensive understanding of the molecular processes involved.
Here, I propose a multifaceted approach that combines a wide range of cutting-edge integrative genomic strategies to significantly advance our understanding of the regulatory logic driving cell fate decisions during human reprogramming to pluripotency.
To this end, I will utilize single cell transcriptomics to isolate reprogramming intermediates, reconstruct their lineage relationships and define transcriptional regulators responsible for the observed transitions (AIM 1). Then, I will dissect the rules by which transcription factors modulate the activity of promoters and enhancer regions during reprogramming transitions, by applying synthetic biology and genome editing approaches (AIM 2). Then, I will adopt an alternative approach to identify reprogramming modulators by the analysis of reprogramming-induced mutagenesis events (AIM 3). Finally, I will explore my findings in multiple primary reprogramming approaches to pluripotency, with the ultimate goal of improving the quality of IPSC derivation (Aim 4).
In summary, this project will expose novel determinants and yet unidentified molecular barriers of reprogramming to pluripotency and will be essential to unlock the full potential of reprogramming technologies for shaping cellular identity in vitro and to address pressing challenges of regenerative medicine.
Summary
The concept that any cell type, upon delivery of the right “cocktail” of transcription factors, can acquire an identity that otherwise it would never achieve, revolutionized the way we approach the study of developmental biology. In light of this, the discovery of induced pluripotent stem cells (IPSCs) and cell fate conversion approaches stimulated new research directions into human regenerative biology. However, the chance to successfully develop patient-tailored therapies is still very limited because reprogramming technologies are applied without a comprehensive understanding of the molecular processes involved.
Here, I propose a multifaceted approach that combines a wide range of cutting-edge integrative genomic strategies to significantly advance our understanding of the regulatory logic driving cell fate decisions during human reprogramming to pluripotency.
To this end, I will utilize single cell transcriptomics to isolate reprogramming intermediates, reconstruct their lineage relationships and define transcriptional regulators responsible for the observed transitions (AIM 1). Then, I will dissect the rules by which transcription factors modulate the activity of promoters and enhancer regions during reprogramming transitions, by applying synthetic biology and genome editing approaches (AIM 2). Then, I will adopt an alternative approach to identify reprogramming modulators by the analysis of reprogramming-induced mutagenesis events (AIM 3). Finally, I will explore my findings in multiple primary reprogramming approaches to pluripotency, with the ultimate goal of improving the quality of IPSC derivation (Aim 4).
In summary, this project will expose novel determinants and yet unidentified molecular barriers of reprogramming to pluripotency and will be essential to unlock the full potential of reprogramming technologies for shaping cellular identity in vitro and to address pressing challenges of regenerative medicine.
Max ERC Funding
1 497 250 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CHROMATINRNA
Project The role of CpG island RNAs and Polycomb-RNA interactions in developmental gene regulation
Researcher (PI) Richard Gareth Jenner
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS2, ERC-2012-StG_20111109
Summary A great challenge in developmental biology research has been to understand how cell type specific expression programs are orchestrated through regulated access to chromatin. The interaction between non-coding RNAs and chromatin regulators is emerging as an exciting new research area with the potential to explain how chromatin modifications are targeted.
Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain developmental regulator genes specific for other cell types in a repressed state and is essential for embryogenesis across Metazoa. We have recently determined that CpG islands targeted by PRC2 generate a class of short non-coding RNAs. The RNAs are produced independently from mRNA, indicative of hitherto uncharacterised transcriptional processes. Furthermore, we have found that the PRC2 subunit Suz12 is an RNA binding protein and directly interacts with these short RNAs and with other RNAs in cells. The role of ncRNA in targeting PRC2 to CpG islands and the importance of PRC2 RNA binding activity for development remains to be understood. Our aims are to:
1. Determine the functional properties of CpG-island RNAs by A. identifying their conserved features, B. determining their role in polycomb targeting of CpG islands and C. investigating whether such a role relates to the antagonism of polycomb targeting by DNA methylation.
2. Establish the biological role for Suz12 RNA binding activity by A. determining the structural determinants for Suz12 binding in vitro, B. verifying these features play a role in PRC2 RNA binding in cells and C. determining the role for PRC2-RNA interactions for polycomb function and development.
This work promises to characterise a potentially fundamental aspect of cell biology and will open a number of avenues for understanding the function of ncRNAs, the RNA binding activity of chromatin regulators, how transcription and chromatin structure are regulated, and how cell state is maintained and reshaped during development.
Summary
A great challenge in developmental biology research has been to understand how cell type specific expression programs are orchestrated through regulated access to chromatin. The interaction between non-coding RNAs and chromatin regulators is emerging as an exciting new research area with the potential to explain how chromatin modifications are targeted.
Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain developmental regulator genes specific for other cell types in a repressed state and is essential for embryogenesis across Metazoa. We have recently determined that CpG islands targeted by PRC2 generate a class of short non-coding RNAs. The RNAs are produced independently from mRNA, indicative of hitherto uncharacterised transcriptional processes. Furthermore, we have found that the PRC2 subunit Suz12 is an RNA binding protein and directly interacts with these short RNAs and with other RNAs in cells. The role of ncRNA in targeting PRC2 to CpG islands and the importance of PRC2 RNA binding activity for development remains to be understood. Our aims are to:
1. Determine the functional properties of CpG-island RNAs by A. identifying their conserved features, B. determining their role in polycomb targeting of CpG islands and C. investigating whether such a role relates to the antagonism of polycomb targeting by DNA methylation.
2. Establish the biological role for Suz12 RNA binding activity by A. determining the structural determinants for Suz12 binding in vitro, B. verifying these features play a role in PRC2 RNA binding in cells and C. determining the role for PRC2-RNA interactions for polycomb function and development.
This work promises to characterise a potentially fundamental aspect of cell biology and will open a number of avenues for understanding the function of ncRNAs, the RNA binding activity of chromatin regulators, how transcription and chromatin structure are regulated, and how cell state is maintained and reshaped during development.
Max ERC Funding
1 499 094 €
Duration
Start date: 2013-09-01, End date: 2019-04-30
Project acronym CLEAR
Project Modulating cellular clearance to cure human disease
Researcher (PI) Andrea Ballabio
Host Institution (HI) FONDAZIONE TELETHON
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Summary
Cellular clearance is a fundamental process required by all cells in all species. Important physiological processes, such as aging, and pathological mechanisms, such as neurodegeneration, are strictly dependent on cellular clearance. In eukaryotes, most of the cellular clearing processes occur in a specialized organelle, the lysosome. This project is based on a recent discovery, made in our laboratory, of a gene network, which we have named CLEAR, that controls lysosomal biogenesis and function and regulates cellular clearance. The specific goals of the project are: 1) the comprehensive characterization of the mechanisms underlying the CLEAR network, 2) the thorough understanding of CLEAR physiological function at the cellular and organism levels, 3) the development of strategies and tools to modulate cellular clearance, and 4) the implementation of proof-of-principle therapeutic studies based on the activation of the CLEAR network in murine models of human lysosomal storage disorders and of neurodegenerative diseases, such as Alzheimers s and Huntington s diseases. A combination of genomics, bioinformatics, systems biology, chemical genomics, cell biology, and mouse genetics approaches will be used to achieve these goals. Our goal is to develop tools to modulate cellular clearance and to use such tools to develop therapies to cure human disease. The potential medical relevance of this project is very high, particularly in the field of neurodegenerative disease. Therapies that prevent, ameliorate or delay neurodegeneration in these diseases would have a huge impact on human health.
Max ERC Funding
2 100 000 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym CONSERVREGCIRCUITRY
Project Conservation and Divergence of Tissue-Specific Transcriptional Regulation
Researcher (PI) Duncan Odom
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2007-StG
Summary Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Summary
Vertebrates contain hundreds of different cell types which maintain phenotypic identity by a combination of epigenetic programming and genomic regulation. Systems biology approaches are now used in a number of laboratories to determine how transcription factors and chromatin marks pattern the human genome. Despite high conservation of the cellular and molecular function of many mammalian transcription factors, our recent experiments in matched mouse and human tissues indicates that most transcription factor binding events to DNA are very poorly conserved. A hypothesis that could account for this apparent divergence is that the larger regional pattern of transcription factor binding may be conserved. To test this, (1) we are characterizing the global transcriptional profile, chromatin state, and complete genomic occupancy of a set of tissue-specific transcription factors in hepatocytes of strategically chosen mammals; (2) to further identify the precise mechanistic contribution of cis and trans effects, we are comparing transcription factor binding at homologous regions of human and mouse DNA in a mouse line that carries human chromosome 21. Together, these projects will provide insight into the general principles of how transcriptional networks are evolutionarily conserved to regulate cell fate specification and function using a clinically important cell type as a model.
Max ERC Funding
960 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym Coupled gene circuit
Project Dynamics, noise, and coupling in gene circuit modules
Researcher (PI) James Charles Wallace Locke
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Summary
Cells must integrate output from multiple genetic circuits in order to correctly control cellular processes. Despite much work characterizing regulation in these circuits, how circuits interact to control global cellular programs remains unclear. This is particularly true given that recent research at the single cell level has revealed that genetic circuits often generate variable or stochastic regulation dynamics. In this proposal we will use a multi-disciplinary approach, combining modelling and time-lapse microscopy, to investigate how cells can robustly integrate signals from multiple dynamic genetic circuits. In particular we will answer the following questions: 1) What types of dynamic signal encoding strategies are available for the cell? 2) What are the benefits of dynamic gene activation, whether stochastic or oscillatory, to the cell? 3) How do cells couple and integrate output from diverse gene modules despite the noise and variability observed in gene circuit dynamics?
We will study these questions using 2 key model systems. In Aim 1, we will examine stochastic pulse regulation dynamics and coupling between alternative sigma factors in B. subtilis. Our preliminary data has revealed that multiple B. subtilis sigma factors stochastically pulse under stress. We will look for evidence of any coupling or interactions between these stochastic pulse circuits. This system will serve as a model for how a cell uses stochastic pulsing to control diverse cellular processes. In Aim 2, we will examine coupling between a deterministic oscillator, the circadian clock, and multiple other key pathways in Cyanobacteria. We will examine how the cell can dynamically couple multiple cellular processes using an oscillating signal. This work will provide an excellent base for Aim 3, in which we will use synthetic biology approaches to develop ‘bottom up’ tests of generation of novel dynamic coupling strategies.
Max ERC Funding
1 499 571 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DARCGENS
Project Derived and Ancestral RNAs: Comparative Genomics and Evolution of ncRNAs
Researcher (PI) Christopher Paul Ponting
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), LS2, ERC-2009-AdG
Summary Much light has been shed on the number, mechanisms and functions of protein-coding genes in the human genome. In comparison, we know almost nothing about the origins and mechanisms of the functional dark matter , including sequence that is transcribed outside of protein-coding gene loci. This interdisciplinary proposal will capitalize on new theoretical and experimental opportunities to establish the extent by which long non-coding RNAs contribute to mammalian and fruit fly biology. Since 2001, the Ponting group has pioneered the comparative analysis of protein-coding genes across the amniotes and Drosophilids within many international genome sequencing consortia. This Advanced Grant will break new ground by applying these approaches to long intergenic non-coding RNA (lincRNA) genes from mammals to birds and to flies. The Grant will allow Ponting to free himself of the constraints normally associated with in silico analyses by analysing lincRNAs in vitro and in vivo. The integration of computational and experimental approaches for lincRNAs from across the metazoan tree provides a powerful new toolkit for elucidating the origins and biological roles of these enigmatic molecules. Catalogues of lincRNA loci will be built for human, mouse, fruit fly, zebrafinch, chicken and Aplysia by exploiting data from next-generation sequencing technologies. This will immediately provide a new perspective on how these loci arise, evolve and function, including whether their orthologues are apparent across diverse species. Using new evidence that lincRNA loci act in cis with neighbouring protein-coding loci, we will determine lincRNA mechanisms and will establish the consequences of lincRNA knock-down, knock-out and over-expression in mouse, chick and fruitfly.
Summary
Much light has been shed on the number, mechanisms and functions of protein-coding genes in the human genome. In comparison, we know almost nothing about the origins and mechanisms of the functional dark matter , including sequence that is transcribed outside of protein-coding gene loci. This interdisciplinary proposal will capitalize on new theoretical and experimental opportunities to establish the extent by which long non-coding RNAs contribute to mammalian and fruit fly biology. Since 2001, the Ponting group has pioneered the comparative analysis of protein-coding genes across the amniotes and Drosophilids within many international genome sequencing consortia. This Advanced Grant will break new ground by applying these approaches to long intergenic non-coding RNA (lincRNA) genes from mammals to birds and to flies. The Grant will allow Ponting to free himself of the constraints normally associated with in silico analyses by analysing lincRNAs in vitro and in vivo. The integration of computational and experimental approaches for lincRNAs from across the metazoan tree provides a powerful new toolkit for elucidating the origins and biological roles of these enigmatic molecules. Catalogues of lincRNA loci will be built for human, mouse, fruit fly, zebrafinch, chicken and Aplysia by exploiting data from next-generation sequencing technologies. This will immediately provide a new perspective on how these loci arise, evolve and function, including whether their orthologues are apparent across diverse species. Using new evidence that lincRNA loci act in cis with neighbouring protein-coding loci, we will determine lincRNA mechanisms and will establish the consequences of lincRNA knock-down, knock-out and over-expression in mouse, chick and fruitfly.
Max ERC Funding
2 400 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym DEPTH
Project DEsigning new Paths in The differentiation Hyperspace
Researcher (PI) Giovanni Cesareni
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA TOR VERGATA
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary The adult human organism contains heterogeneous reservoirs of pluripotent stem cells characterized by a diversified differentiation potential. Understanding their biology at a system level would advance our ability to selectively activate and control their differentiation potential. Aside from the basic implications this would represent a substantial progress in regenerative medicine by providing a rational framework for using small molecules to control cell trans-determination and reprogramming.
Here we propose a combined experimental and modelling approach to assemble a predictive model of mesoderm stem cell differentiation. Different cell states are identified by a vector in the differentiation hyperspace, the coordinates of the vector being the activation levels of a large number of nodes of a logic model linking the cell signalling network to the transcription regulatory network.
The premise of this proposal is that differentiation is equivalent to rewiring the cell regulatory network as a consequence of induced perturbation of the gene expression program. This process can be rationally controlled by perturbing specific nodes of the signalling network that in turn control transcription factor activation. We will develop this novel strategy using the mesoangioblast ex vivo differentiation system. Mesoangioblasts are one of the many different types of mesoderm stem/progenitor cells that exhibit myogenic potential. Ex vivo, they readily differentiate into striated muscle. However, under appropriate conditions they can also differentiate, into smooth muscle and adipocytes, albeit less efficiently. We will start by assembling, training and optimizing different predictive models for the undifferentiated mesoangioblast. Next by a combination of experiments and modelling approaches we will learn how, by perturbing the signalling models with different inhibitors and activators we can rewire the cell networks to induce trans-determination or reprogramming.
Summary
The adult human organism contains heterogeneous reservoirs of pluripotent stem cells characterized by a diversified differentiation potential. Understanding their biology at a system level would advance our ability to selectively activate and control their differentiation potential. Aside from the basic implications this would represent a substantial progress in regenerative medicine by providing a rational framework for using small molecules to control cell trans-determination and reprogramming.
Here we propose a combined experimental and modelling approach to assemble a predictive model of mesoderm stem cell differentiation. Different cell states are identified by a vector in the differentiation hyperspace, the coordinates of the vector being the activation levels of a large number of nodes of a logic model linking the cell signalling network to the transcription regulatory network.
The premise of this proposal is that differentiation is equivalent to rewiring the cell regulatory network as a consequence of induced perturbation of the gene expression program. This process can be rationally controlled by perturbing specific nodes of the signalling network that in turn control transcription factor activation. We will develop this novel strategy using the mesoangioblast ex vivo differentiation system. Mesoangioblasts are one of the many different types of mesoderm stem/progenitor cells that exhibit myogenic potential. Ex vivo, they readily differentiate into striated muscle. However, under appropriate conditions they can also differentiate, into smooth muscle and adipocytes, albeit less efficiently. We will start by assembling, training and optimizing different predictive models for the undifferentiated mesoangioblast. Next by a combination of experiments and modelling approaches we will learn how, by perturbing the signalling models with different inhibitors and activators we can rewire the cell networks to induce trans-determination or reprogramming.
Max ERC Funding
2 639 804 €
Duration
Start date: 2013-04-01, End date: 2018-09-30