Project acronym AMPLITUDES
Project Novel structures in scattering amplitudes
Researcher (PI) Johannes Martin HENN
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Summary
This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AXION
Project Axions: From Heaven to Earth
Researcher (PI) Frank Wilczek
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Summary
Axions are hypothetical particles whose existence would solve two major problems: the strong P, T problem (a major blemish on the standard model); and the dark matter problem. It is a most important goal to either observe or rule out the existence of a cosmic axion background. It appears that decisive observations may be possible, but only after orchestrating insight from specialities ranging from quantum field theory and astrophysical modeling to ultra-low noise quantum measurement theory. Detailed predictions for the magnitude and structure of the cosmic axion background depend on cosmological and astrophysical modeling, which can be constrained by theoretical insight and numerical simulation. In parallel, we must optimize strategies for extracting accessible signals from that very weakly interacting source.
While the existence of axions as fundamental particles remains hypothetical, the equations governing how axions interact with electromagnetic fields also govern (with different parameters) how certain materials interact with electromagnetic fields. Thus those materials embody “emergent” axions. The equations have remarkable properties, which one can test in these materials, and possibly put to practical use.
Closely related to axions, mathematically, are anyons. Anyons are particle-like excitations that elude the familiar classification into bosons and fermions. Theoretical and numerical studies indicate that they are common emergent features of highly entangled states of matter in two dimensions. Recent work suggests the existence of states of matter, both natural and engineered, in which anyon dynamics is both important and experimentally accessible. Since the equations for anyons and axions are remarkably similar, and both have common, deep roots in symmetry and topology, it will be fruitful to consider them together.
Max ERC Funding
2 324 391 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BinGraSp
Project Modeling the Gravitational Spectrum of Neutron Star Binaries
Researcher (PI) Sebastiano Bernuzzi
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary The most energetic electromagnetic phenomena in the Universe are believed to be powered by the collision of two neutron stars, the smallest and densest stars on which surface gravity is about 2 billion times stronger than gravity on Earth. However, a definitive identification of neutron star mergers as central engines for short-gamma-ray bursts and kilonovae transients is possible only by direct gravitational-wave observations. The latter provide us with unique information on neutron stars' masses, radii, and spins, including the possibility to set the strongest observational constraints on the unknown equation-of-state of matter at supranuclear densities.
Neutron stars binary mergers are among the main targets for ground-based gravitational-wave interferometers like Advanced LIGO and Virgo, which start operations this year. The astrophysical data analysis of the signals emitted by these sources requires the availability of accurate waveform models, which are missing to date. Hence, the theoretical understanding of the gravitational spectrum is a necessary and urgent step for the development of a gravitational-based astrophysics in the next years.
This project aims at developing, for the first time, a precise theoretical model for the complete gravitational spectrum of neutron star binaries, including the merger and postmerger stages of the coalescence process. Building on the PI's unique expertise and track record, the proposed research exploits synergy between analytical and numerical methods in General Relativity. Results from state of the art nonlinear 3D numerical relativity simulations will be combined with the most advanced analytical framework for the relativistic two-body problem. The model developed here will be used in the first gravitational-wave observations and will dramatically impact multimessenger astrophysics.
Summary
The most energetic electromagnetic phenomena in the Universe are believed to be powered by the collision of two neutron stars, the smallest and densest stars on which surface gravity is about 2 billion times stronger than gravity on Earth. However, a definitive identification of neutron star mergers as central engines for short-gamma-ray bursts and kilonovae transients is possible only by direct gravitational-wave observations. The latter provide us with unique information on neutron stars' masses, radii, and spins, including the possibility to set the strongest observational constraints on the unknown equation-of-state of matter at supranuclear densities.
Neutron stars binary mergers are among the main targets for ground-based gravitational-wave interferometers like Advanced LIGO and Virgo, which start operations this year. The astrophysical data analysis of the signals emitted by these sources requires the availability of accurate waveform models, which are missing to date. Hence, the theoretical understanding of the gravitational spectrum is a necessary and urgent step for the development of a gravitational-based astrophysics in the next years.
This project aims at developing, for the first time, a precise theoretical model for the complete gravitational spectrum of neutron star binaries, including the merger and postmerger stages of the coalescence process. Building on the PI's unique expertise and track record, the proposed research exploits synergy between analytical and numerical methods in General Relativity. Results from state of the art nonlinear 3D numerical relativity simulations will be combined with the most advanced analytical framework for the relativistic two-body problem. The model developed here will be used in the first gravitational-wave observations and will dramatically impact multimessenger astrophysics.
Max ERC Funding
1 432 301 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CRITISUP2
Project Criticality and Dual Superfluidity
Researcher (PI) christophe SALOMON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary Low temperature matter exhibits a spectacular variety of highly ordered states that occur through phase transitions. In quantum systems, phase transitions and associated critical phenomena constitute a central issue of modern physics. Wilson’s theory of renormalization showed that very different physical systems could be unified under the same universality class characterized by critical exponents. The high degree of control offered by ultracold atom experiments sets them as an ideal platform for the investigation of phase transitions and critical phenomena.
CRITISUP2 aims at exploring criticality in superfluid spin ½ Fermi gases where the interplay between temperature spin polarization and interactions is at the origin of a rich phase diagram and a variety of phase transitions. We will measure the corresponding static and dynamic critical exponents, and search for the long-sought Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase predicted over 50 years ago. We will also study the phase diagram and critical counterflow of dual Bose-Fermi superfluids which have emerged as a new paradigm of quantum matter. Cutting-edge Bold Diagrammatic Monte Carlo and new resummation methods, developed in-house, will be confronted to the experiments on the one hand, and provide answers to debated questions on the other.
The expected outcomes of CRITISUP2 will constitute a major leap forward relevant for several fields of modern physics, ranging from condensed-matter to astrophysics, nuclear physics, and high energy physics.
Summary
Low temperature matter exhibits a spectacular variety of highly ordered states that occur through phase transitions. In quantum systems, phase transitions and associated critical phenomena constitute a central issue of modern physics. Wilson’s theory of renormalization showed that very different physical systems could be unified under the same universality class characterized by critical exponents. The high degree of control offered by ultracold atom experiments sets them as an ideal platform for the investigation of phase transitions and critical phenomena.
CRITISUP2 aims at exploring criticality in superfluid spin ½ Fermi gases where the interplay between temperature spin polarization and interactions is at the origin of a rich phase diagram and a variety of phase transitions. We will measure the corresponding static and dynamic critical exponents, and search for the long-sought Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase predicted over 50 years ago. We will also study the phase diagram and critical counterflow of dual Bose-Fermi superfluids which have emerged as a new paradigm of quantum matter. Cutting-edge Bold Diagrammatic Monte Carlo and new resummation methods, developed in-house, will be confronted to the experiments on the one hand, and provide answers to debated questions on the other.
The expected outcomes of CRITISUP2 will constitute a major leap forward relevant for several fields of modern physics, ranging from condensed-matter to astrophysics, nuclear physics, and high energy physics.
Max ERC Funding
2 246 536 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym CROSS
Project Cryogenic Rare-event Observatory with Surface Sensitivity
Researcher (PI) Andrea Ernesto Guido GIULIANI
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary CROSS will set the grounds for large-scale experiments searching for neutrinoless double beta decay with zero background at an exposure scale of ~1 tonne x year and with very high energy resolution – about 1.5‰ – in the region of interest. These features will enable searching for lepton number violation with unprecedented sensitivity, penetrating in prospect the direct-ordering region of the neutrino masses. CROSS will be based on arrays of TeO2 and Li2MoO4 bolometers enriched in the isotopes of interest 130Te and 100Mo, respectively. There are strong arguments in favor of these choices, such as the high double beta transition energy of these candidates, the easy crystallization processes of TeO2 and Li2MoO4, and the superior bolometric performance of these compounds in terms of energy resolution and intrinsic purity. The key idea in CROSS is to reject surface events (a dominant background source) by pulse-shape discrimination, obtained by exploiting solid-state-physics phenomena in superconductors. The surfaces of the crystals will be coated by an ultrapure superconductive aluminium film, which will act as a pulse-shape modifier by delaying the pulse development in case of shallow energy depositions, exploiting the long quasi-particle life-time in aluminium. This method will allow getting rid of the light detectors used up to now to discriminate surface alpha particles, simplifying a lot the bolometric structure and achieving the additional advantage to reject also beta surface events, which unfortunately persist as an ultimate background source if only alpha particles are tagged. The intrinsic modularity and the simplicity of the read-out will make CROSS easily expandable. The CROSS program is focused on an intermediate experiment with 90 crystals, installed underground in the Canfranc laboratory, which will be not only extremely competitive in the international context but also a decisive step to demonstrate the enormous potential of CROSS in terms of background.
Summary
CROSS will set the grounds for large-scale experiments searching for neutrinoless double beta decay with zero background at an exposure scale of ~1 tonne x year and with very high energy resolution – about 1.5‰ – in the region of interest. These features will enable searching for lepton number violation with unprecedented sensitivity, penetrating in prospect the direct-ordering region of the neutrino masses. CROSS will be based on arrays of TeO2 and Li2MoO4 bolometers enriched in the isotopes of interest 130Te and 100Mo, respectively. There are strong arguments in favor of these choices, such as the high double beta transition energy of these candidates, the easy crystallization processes of TeO2 and Li2MoO4, and the superior bolometric performance of these compounds in terms of energy resolution and intrinsic purity. The key idea in CROSS is to reject surface events (a dominant background source) by pulse-shape discrimination, obtained by exploiting solid-state-physics phenomena in superconductors. The surfaces of the crystals will be coated by an ultrapure superconductive aluminium film, which will act as a pulse-shape modifier by delaying the pulse development in case of shallow energy depositions, exploiting the long quasi-particle life-time in aluminium. This method will allow getting rid of the light detectors used up to now to discriminate surface alpha particles, simplifying a lot the bolometric structure and achieving the additional advantage to reject also beta surface events, which unfortunately persist as an ultimate background source if only alpha particles are tagged. The intrinsic modularity and the simplicity of the read-out will make CROSS easily expandable. The CROSS program is focused on an intermediate experiment with 90 crystals, installed underground in the Canfranc laboratory, which will be not only extremely competitive in the international context but also a decisive step to demonstrate the enormous potential of CROSS in terms of background.
Max ERC Funding
3 146 598 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym DECCA
Project Devices, engines and circuits: quantum engineering with cold atoms
Researcher (PI) Jean-Philippe BRANTUT
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Summary
Over the last decade, cold atomic gases have become one of the best controlled quantum system. This novel, synthetic material can be shaped at the microscopic level to mimic a wide range of models, and simulate the universal physics that these models describe. This project pioneers a new approach to quantum simulations, jumping from cold atoms materials into the realm of devices: systems carved out of cold gases, separated by interfaces, connected to each other and allowing for a controlled driving.
At the heart of this approach is the study of transport of atoms at the quantum level. Our devices will allow for the measurement of the universal conductance of quantum critical systems or other many-body states. They will feature interfaces and contacts where new types of localized states emerge, such as the one proposed to explain the long-standing question of the “0.7 anomaly” in quantum point contacts. They will also allow for a new type of engineering, where currents of particles, spin or entropy can be controlled and directed in order to perform operations such as cooling.
This research will be possible thanks to the development of a new apparatus, capable of detecting in a non-destructive way tiny atomic currents, such as the one driven through single mode quantum conductors. It will combine an optical cavity for high efficiency optical detection, and high optical resolution optics allowing for manipulations and patterning at the scale of the wave function of individual particles.
Max ERC Funding
1 454 258 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym DenseMatter
Project High-density QCD matter from first principles
Researcher (PI) Aleksi VUORINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary Predicting the collective properties of strongly interacting matter at the highest densities reached within the present-day Universe is one of the most prominent challenges in modern nuclear theory. It is motivated by the desire to map out the complicated phase diagram of the theory, and perhaps even more importantly by the mystery surrounding the inner structure of neutron stars. The task is, however, severely complicated by the notorious Sign Problem of lattice QCD, due to which no nonperturbative first principles methods are available for tackling it.
The proposal at hand approaches the strong interaction challenge using a first principles toolbox containing most importantly the machinery of modern resummed perturbation theory and effective field theory. Our main technical goal is to determine three new orders in the weak coupling expansion of the Equation of State (EoS) of unpaired zero-temperature quark matter. Alongside this effort, we will investigate the derivation of a new type of effective description for cold and dense QCD, allowing us to include to the EoS contributions from quark pairing more accurately than what is possible at present.
The highlight result of our work will be the derivation of the most accurate neutron star matter EoS to date, which will be obtained by combining insights from our work with those originating from the Chiral Effective Theory of nuclear interactions. We anticipate being able to reduce the current uncertainty in the EoS by nearly a factor of two, which will convert into a precise prediction for the Mass-Radius relation of the stars. This will be a milestone result in nuclear astrophysics, and in combination with emerging observational data on stellar masses and radii will contribute to solving one of the most intriguing puzzles in the field – the nature of the most compact stars in the Universe.
Summary
Predicting the collective properties of strongly interacting matter at the highest densities reached within the present-day Universe is one of the most prominent challenges in modern nuclear theory. It is motivated by the desire to map out the complicated phase diagram of the theory, and perhaps even more importantly by the mystery surrounding the inner structure of neutron stars. The task is, however, severely complicated by the notorious Sign Problem of lattice QCD, due to which no nonperturbative first principles methods are available for tackling it.
The proposal at hand approaches the strong interaction challenge using a first principles toolbox containing most importantly the machinery of modern resummed perturbation theory and effective field theory. Our main technical goal is to determine three new orders in the weak coupling expansion of the Equation of State (EoS) of unpaired zero-temperature quark matter. Alongside this effort, we will investigate the derivation of a new type of effective description for cold and dense QCD, allowing us to include to the EoS contributions from quark pairing more accurately than what is possible at present.
The highlight result of our work will be the derivation of the most accurate neutron star matter EoS to date, which will be obtained by combining insights from our work with those originating from the Chiral Effective Theory of nuclear interactions. We anticipate being able to reduce the current uncertainty in the EoS by nearly a factor of two, which will convert into a precise prediction for the Mass-Radius relation of the stars. This will be a milestone result in nuclear astrophysics, and in combination with emerging observational data on stellar masses and radii will contribute to solving one of the most intriguing puzzles in the field – the nature of the most compact stars in the Universe.
Max ERC Funding
1 342 133 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym DIMO6FIT
Project DIMO6FIT: Extending the Standard Model -- Global Fits of Optimal Variables in Diboson Production
Researcher (PI) Kristin LOHWASSER
Host Institution (HI) THE UNIVERSITY OF SHEFFIELD
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary The status quo of particle physics after the first data taking at the Large Hadron Collider is: a light Higgs particle has been discovered that is perfectly compatible with the electroweak Standard Model (SM). While this is undoubtedly a historic step in particle physics, it is not entirely satisfactory, as in its current state the SM leaves many questions unanswered.
If the Standard Model of today is just the low energy theory of more complex phenomena, then these phenomena will become manifest in modifications of the cross sections and differential distributions of known processes. These modifications can be described by higher dimensional operators, which are general extensions of the SM and can be tested using precision measurements of diboson production processes.
The DIMO6Fit project will focus on measuring those production processes most sensitive to the new physics effects, using innovative analysis techniques aimed at significantly reducing the debilitating limitations in current measurements. I will set up a novel combined global fit for determining the higher dimensional operators coherently based on the LHC measurements.
The full determination of the higher dimensional operators will be the first global precision test of general extensions to the SM. The ERC Starting Grant will make it possible to bring together a team that will conduct more efficient measurements then today at the ATLAS experiment, that will establish the framework for new precision tests, and will generate results of yet unforeseeable potential. With DIMO6FIT I will establish an exciting programme aiming at determining the higher dimensional operators, which will help uncover new physics and elucidate its nature. These novel studies will form a unique and significant contribution to the understanding of the fundamental interactions of known and possibly yet unknown particles.
Summary
The status quo of particle physics after the first data taking at the Large Hadron Collider is: a light Higgs particle has been discovered that is perfectly compatible with the electroweak Standard Model (SM). While this is undoubtedly a historic step in particle physics, it is not entirely satisfactory, as in its current state the SM leaves many questions unanswered.
If the Standard Model of today is just the low energy theory of more complex phenomena, then these phenomena will become manifest in modifications of the cross sections and differential distributions of known processes. These modifications can be described by higher dimensional operators, which are general extensions of the SM and can be tested using precision measurements of diboson production processes.
The DIMO6Fit project will focus on measuring those production processes most sensitive to the new physics effects, using innovative analysis techniques aimed at significantly reducing the debilitating limitations in current measurements. I will set up a novel combined global fit for determining the higher dimensional operators coherently based on the LHC measurements.
The full determination of the higher dimensional operators will be the first global precision test of general extensions to the SM. The ERC Starting Grant will make it possible to bring together a team that will conduct more efficient measurements then today at the ATLAS experiment, that will establish the framework for new precision tests, and will generate results of yet unforeseeable potential. With DIMO6FIT I will establish an exciting programme aiming at determining the higher dimensional operators, which will help uncover new physics and elucidate its nature. These novel studies will form a unique and significant contribution to the understanding of the fundamental interactions of known and possibly yet unknown particles.
Max ERC Funding
1 497 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym DYNAMINT
Project Dynamics of Probed, Pulsed, Quenched and Driven Integrable Quantum Systems
Researcher (PI) Jean-Sébastien CAUX
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), PE2, ERC-2016-ADG
Summary This proposal intends to develop and apply a new-generation theoretical toolbox for understanding the rich dynamics of strongly-interacting many-body quantum sytems subjected to destabilizing manipulations bringing them very far from equilibrium.
In atomic systems, condensed matter and nanophysics settings, quantum matter is nowadays routinely pushed beyond the traditional low-energy/linear response/thermal equilibrium paradigms. Some experiments even clearly highlight the need to revise basic fundamental quantum statistical mechanics notions such as ergodicity, relaxation and thermalization in order to explain their behaviour. Theory must thus urgently revise its textbooks and develop new interpretations and capabilities for offering concrete, quantitative phenomenology.
This proposal is focused on a set of systems at the very center of this strongly-correlated, experimentally realizable far-from-equilibrium spectacle: integrable models of quantum spin chains, interacting gases confined to one spatial dimension, and quantum dots. Building up on recent theoretical breakthroughs in dynamical correlations and post-quench steady states, this proposal aims to shed a new light on the fundamental principles at the heart of many-body quantum dynamics. It will implement a broad and ambitious research agenda consisting of synergetic projects from mathematically formal thought experiments all the way to phenomenologically applied practical calculations. The types of protocols to be studied include probes creating high-energy excitations, pulses inducing changes beyond linear response, quenches causing sudden global reorganizations, all the way to drivings completely metamorphozing the physical states.
The result will be to provide reliable, experimentally relevant and urgently-needed theoretical `anchoring points' in our general understanding of the physics underlying far-from-equilibrium strongly-interacting quantum matter.
Summary
This proposal intends to develop and apply a new-generation theoretical toolbox for understanding the rich dynamics of strongly-interacting many-body quantum sytems subjected to destabilizing manipulations bringing them very far from equilibrium.
In atomic systems, condensed matter and nanophysics settings, quantum matter is nowadays routinely pushed beyond the traditional low-energy/linear response/thermal equilibrium paradigms. Some experiments even clearly highlight the need to revise basic fundamental quantum statistical mechanics notions such as ergodicity, relaxation and thermalization in order to explain their behaviour. Theory must thus urgently revise its textbooks and develop new interpretations and capabilities for offering concrete, quantitative phenomenology.
This proposal is focused on a set of systems at the very center of this strongly-correlated, experimentally realizable far-from-equilibrium spectacle: integrable models of quantum spin chains, interacting gases confined to one spatial dimension, and quantum dots. Building up on recent theoretical breakthroughs in dynamical correlations and post-quench steady states, this proposal aims to shed a new light on the fundamental principles at the heart of many-body quantum dynamics. It will implement a broad and ambitious research agenda consisting of synergetic projects from mathematically formal thought experiments all the way to phenomenologically applied practical calculations. The types of protocols to be studied include probes creating high-energy excitations, pulses inducing changes beyond linear response, quenches causing sudden global reorganizations, all the way to drivings completely metamorphozing the physical states.
The result will be to provide reliable, experimentally relevant and urgently-needed theoretical `anchoring points' in our general understanding of the physics underlying far-from-equilibrium strongly-interacting quantum matter.
Max ERC Funding
2 444 446 €
Duration
Start date: 2017-09-01, End date: 2022-08-31