Project acronym 2O2ACTIVATION
Project Development of Direct Dehydrogenative Couplings mediated by Dioxygen
Researcher (PI) Frederic William Patureau
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Summary
The field of C-H bond activation has evolved at an exponential pace in the last 15 years. What appeals most in those novel synthetic techniques is clear: they bypass the pre-activation steps usually required in traditional cross-coupling chemistry by directly metalating C-H bonds. Many C-H bond functionalizations today however, rely on poorly atom and step efficient oxidants, leading to significant and costly chemical waste, thereby seriously undermining the overall sustainability of those methods. As restrictions in sustainability regulations will further increase, and the cost of certain chemical commodities will rise, atom efficiency in organic synthesis remains a top priority for research.
The aim of 2O2ACTIVATION is to develop novel technologies utilizing O2 as sole terminal oxidant in order to allow useful, extremely sustainable, thermodynamically challenging, dehydrogenative C-N and C-O bond forming coupling reactions. However, the moderate reactivity of O2 towards many catalysts constitutes a major challenge. 2O2ACTIVATION will pioneer the design of new catalysts based on the ultra-simple propene motive, capable of direct activation of O2 for C-H activation based cross-couplings. The project is divided into 3 major lines: O2 activation using propene and its analogues (propenoids), 1) without metal or halide, 2) with hypervalent halide catalysis, 3) with metal catalyzed C-H activation.
The philosophy of 2O2ACTIVATION is to focus C-H functionalization method development on the oxidative event.
Consequently, 2O2ACTIVATION breakthroughs will dramatically shortcut synthetic routes through the use of inactivated, unprotected, and readily available building blocks; and thus should be easily scalable. This will lead to a strong decrease in the costs related to the production of many essential chemicals, while preserving the environment (water as terminal by-product). The resulting novels coupling methods will thus have a lasting impact on the chemical industry.
Max ERC Funding
1 489 823 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 3D_Tryps
Project The role of three-dimensional genome architecture in antigenic variation
Researcher (PI) Tim Nicolai SIEGEL
Host Institution (HI) LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Summary
Antigenic variation is a widely employed strategy to evade the host immune response. It has similar functional requirements even in evolutionarily divergent pathogens. These include the mutually exclusive expression of antigens and the periodic, nonrandom switching in the expression of different antigens during the course of an infection. Despite decades of research the mechanisms of antigenic variation are not fully understood in any organism.
The recent development of high-throughput sequencing-based assays to probe the 3D genome architecture (Hi-C) has revealed the importance of the spatial organization of DNA inside the nucleus. 3D genome architecture plays a critical role in the regulation of mutually exclusive gene expression and the frequency of translocation between different genomic loci in many eukaryotes. Thus, genome architecture may also be a key regulator of antigenic variation, yet the causal links between genome architecture and the expression of antigens have not been studied systematically. In addition, the development of CRISPR-Cas9-based approaches to perform nucleotide-specific genome editing has opened unprecedented opportunities to study the influence of DNA sequence elements on the spatial organization of DNA and how this impacts antigen expression.
I have adapted both Hi-C and CRISPR-Cas9 technology to the protozoan parasite Trypanosoma brucei, one of the most important model organisms to study antigenic variation. These techniques will enable me to bridge the field of antigenic variation research with that of genome architecture. I will perform the first systematic analysis of the role of genome architecture in the mutually exclusive and hierarchical expression of antigens in any pathogen.
The experiments outlined in this proposal will provide new insight, facilitating a new view of antigenic variation and may eventually help medical intervention in T. brucei and in other pathogens relying on antigenic variation for their survival.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym 4-TOPS
Project Four experiments in Topological Superconductivity.
Researcher (PI) Laurens Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Summary
Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Max ERC Funding
2 497 567 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym ACETOGENS
Project Acetogenic bacteria: from basic physiology via gene regulation to application in industrial biotechnology
Researcher (PI) Volker MÜLLER
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS9, ERC-2016-ADG
Summary Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Summary
Demand for biofuels and other biologically derived commodities is growing worldwide as efforts increase to reduce reliance on fossil fuels and to limit climate change. Most commercial approaches rely on fermentations of organic matter with its inherent problems in producing CO2 and being in conflict with the food supply of humans. These problems are avoided if CO2 can be used as feedstock. Autotrophic organisms can fix CO2 by producing chemicals that are used as building blocks for the synthesis of cellular components (Biomass). Acetate-forming bacteria (acetogens) do neither require light nor oxygen for this and they can be used in bioreactors to reduce CO2 with hydrogen gas, carbon monoxide or an organic substrate. Gas fermentation using these bacteria has already been realized on an industrial level in two pre-commercial 100,000 gal/yr demonstration facilities to produce fuel ethanol from abundant waste gas resources (by LanzaTech). Acetogens can metabolise a wide variety of substrates that could be used for the production of biocommodities. However, their broad use to produce biofuels and platform chemicals from substrates other than gases or together with gases is hampered by our very limited knowledge about their metabolism and ability to use different substrates simultaneously. Nearly nothing is known about regulatory processes involved in substrate utilization or product formation but this is an absolute requirement for metabolic engineering approaches. The aim of this project is to provide this basic knowledge about metabolic routes in the acetogenic model strain Acetobacterium woodii and their regulation. We will unravel the function of “organelles” found in this bacterium and explore their potential as bio-nanoreactors for the production of biocommodities and pave the road for the industrial use of A. woodii in energy (hydrogen) storage. Thus, this project creates cutting-edge opportunities for the development of biosustainable technologies in Europe.
Max ERC Funding
2 497 140 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym ALLERGUT
Project Mucosal Tolerance and Allergic Predisposition: Does it all start in the gut?
Researcher (PI) Caspar OHNMACHT
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS6, ERC-2016-STG
Summary Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Summary
Currently, more than 30% of all Europeans suffer from one or more allergic disorder but treatment is still mostly symptomatic due to a lack of understanding the underlying causality. Allergies are caused by type 2 immune responses triggered by recognition of harmless antigens. Both genetic and environmental factors have been proposed to favour allergic predisposition and both factors have a huge impact on the symbiotic microbiota and the intestinal immune system. Recently we and others showed that the transcription factor ROR(γt) seems to play a key role in mucosal tolerance in the gut and also regulates intestinal type 2 immune responses.
Based on these results I postulate two major events in the gut for the development of an allergy in the lifetime of an individual: First, a failure to establish mucosal tolerance or anergy constitutes a necessity for the outbreak of allergic symptoms and allergic disease. Second, a certain ‘core’ microbiome or pathway of the intestinal microbiota predispose certain individuals for the later development of allergic disorders. Therefore, I will address the following aims:
1) Influence of ROR(γt) on mucosal tolerance induction and allergic disorders
2) Elucidate the T cell receptor repertoire of intestinal Th2 and ROR(γt)+ Tregs and assess the role of alternative NFκB pathway for induction of mucosal tolerance
3) Identification of ‘core’ microbiome signatures or metabolic pathways that favour allergic predisposition
ALLERGUT will provide ground-breaking knowledge on molecular mechanisms of the failure of mucosal tolerance in the gut and will prove if the resident ROR(γt)+ T(reg) cells can function as a mechanistic starting point for molecular intervention strategies on the background of the hygiene hypothesis. The vision of ALLERGUT is to diagnose mucosal disbalance, prevent and treat allergic disorders even before outbreak and thereby promote Public Health initiative for better living.
Max ERC Funding
1 498 175 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym AMPLIPORE
Project Understanding negative gas adsorption in highly porous networks for the design of pressure amplifying materials
Researcher (PI) Stefan Kaskel
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Advanced Grant (AdG), PE5, ERC-2016-ADG
Summary Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Summary
Negative gas adsorption (NGA) is a new, counterintuitive and paradoxical phenomenon, for the first time
reported by my group in 2016: Normal solid materials with significant outer or inner surface area always
take up gas when the pressure in the surrounding reservoir is increased (adsorption). NGA networks instead
react at a certain point in the opposite direction: They release gas upon external pressure increase, leading to
an overall pressure amplification in a closed system. Comparable phenomena have never been reported
before. What is so exciting about NGA? We have a unique material in hand, that counteracts to an external
force by force amplification.
So far NGA has solely been observed in one of our new coordination polymers, featuring a colossal selfcompression
associated with a mesopore-to-micropore transformation. Gas pressure amplifying materials
could lead to important innovations in gas releasing rescue systems, pneumatic control systems (production,
transportation), micropumps, microfluidic devices, pneumatic actuators, and artificial lungs. A fundamental
understanding of the physical mechanisms, structures, and thermodynamic boundary conditions is an
essential prerequisite for any industrial application of this counterintuitive phenomenon.
Combining strong synthetic methodologies with advanced analytical techniques, AMPLIPORE will elucidate
the characteristic molecular and mesoscopic materials signatures as well as thermodynamic boundary
conditions of NGA phenomena. We will elaborate a generic NGA-materials concept to tailor the pressure
amplification and explore temperature and pressure ranges at which NGA can be applied. Developing tailormade
instrumentation for kinetic investigations of NGA will give fundamental insights into the intrinsic and
macroscopic dynamics of crystal-to-crystal transformations for applications in micropneumatic systems.
Max ERC Funding
2 363 125 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym AMPLITUDES
Project Novel structures in scattering amplitudes
Researcher (PI) Johannes Martin HENN
Host Institution (HI) JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Call Details Consolidator Grant (CoG), PE2, ERC-2016-COG
Summary This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Summary
This project focuses on developing quantum field theory methods and applying them to the phenomenology of elementary particles. At the Large Hadron Collider (LHC) our current best theoretical understanding of particle physics is being tested against experiment by measuring e.g. properties of the recently discovered Higgs boson. With run two of the LHC, currently underway, the experimental accuracy will further increase. Theoretical predictions matching the latter are urgently needed. Obtaining these requires extremely difficult calculations of scattering amplitudes and cross sections in quantum field theory, including calculations to correctly describe large contributions due to long-distance physics in the latter. Major obstacles in such computations are the large number of Feynman diagrams that are difficult to handle, even with the help of modern computers, and the computation of Feynman loop integrals. To address these issues, we will develop innovative methods that are inspired by new structures found in supersymmetric field theories. We will extend the scope of the differential equations method for computing Feynman integrals, and apply it to scattering processes that are needed for phenomenology, but too complicated to analyze using current methods. Our results will help measure fundamental parameters of Nature, such as, for example, couplings of the Higgs boson, with unprecedented precision. Moreover, by accurately predicting backgrounds from known physics, our results will also be invaluable for searches of new particles.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AppSAM
Project A Flexible Platform for the Application of SAM-dependent enzymes
Researcher (PI) Jennifer Nina ANDEXER
Host Institution (HI) ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Call Details Starting Grant (StG), LS9, ERC-2016-STG
Summary AppSAM will unlock the synthetic capability of S-adenosyl¬methionine (SAM)-dependent methyltransferases and radical SAM enzymes for application in environmentally friendly and fully sustainable reactions. The biotechnological application of these enzymes will provide access to chemo-, regio- and stereoselective methylations and alkylations, as well as to a wide range of complex rearrangement reactions that are currently not possible through traditional approaches. Methylation reactions are of particular interest due to their importance in epigenetics, cancer metabolism and the development of novel pharmaceuticals. As chemical methylation methods often involve toxic compounds and rarely exhibit the desired selectivity and specificity, there is an urgent need for new, environmentally friendly methodologies.
The proposed project will meet these demands by the provision of modular in vitro and in vivo systems that can be tailored to specific applications. In the first phase of AppSAM, efficient in vitro SAM-regeneration systems will be developed for use with methyltransferases as well as radical SAM enzymes. To achieve this aim, enzymes from different biosynthetic pathways will be combined in multi-enzyme cascades; methods from enzyme and reaction engineering will be used for optimisation. The second phase of AppSAM will address the application on a preparative scale. This will include the isolation of pure product from the in vitro systems, reactions using immobilised enzymes and extracts from in vivo productions. In addition to E. coli, the methylotrophic bacterium Methylobacter extorquens AM1 will be used as a host for the in vivo systems. M. extorquens can use C1 building blocks such as methanol as the sole carbon source, thereby initiating the biotechnological methylation process from a green source material and making the process fully sustainable, as well as being compatible with an envisaged “methanol economy”.
Summary
AppSAM will unlock the synthetic capability of S-adenosyl¬methionine (SAM)-dependent methyltransferases and radical SAM enzymes for application in environmentally friendly and fully sustainable reactions. The biotechnological application of these enzymes will provide access to chemo-, regio- and stereoselective methylations and alkylations, as well as to a wide range of complex rearrangement reactions that are currently not possible through traditional approaches. Methylation reactions are of particular interest due to their importance in epigenetics, cancer metabolism and the development of novel pharmaceuticals. As chemical methylation methods often involve toxic compounds and rarely exhibit the desired selectivity and specificity, there is an urgent need for new, environmentally friendly methodologies.
The proposed project will meet these demands by the provision of modular in vitro and in vivo systems that can be tailored to specific applications. In the first phase of AppSAM, efficient in vitro SAM-regeneration systems will be developed for use with methyltransferases as well as radical SAM enzymes. To achieve this aim, enzymes from different biosynthetic pathways will be combined in multi-enzyme cascades; methods from enzyme and reaction engineering will be used for optimisation. The second phase of AppSAM will address the application on a preparative scale. This will include the isolation of pure product from the in vitro systems, reactions using immobilised enzymes and extracts from in vivo productions. In addition to E. coli, the methylotrophic bacterium Methylobacter extorquens AM1 will be used as a host for the in vivo systems. M. extorquens can use C1 building blocks such as methanol as the sole carbon source, thereby initiating the biotechnological methylation process from a green source material and making the process fully sustainable, as well as being compatible with an envisaged “methanol economy”.
Max ERC Funding
1 499 219 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym AQSuS
Project Analog Quantum Simulation using Superconducting Qubits
Researcher (PI) Gerhard KIRCHMAIR
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Summary
AQSuS aims at experimentally implementing analogue quantum simulation of interacting spin models in two-dimensional geometries. The proposed experimental approach paves the way to investigate a broad range of currently inaccessible quantum phenomena, for which existing analytical and numerical methods reach their limitations. Developing precisely controlled interacting quantum systems in 2D is an important current goal well beyond the field of quantum simulation and has applications in e.g. solid state physics, computing and metrology.
To access these models, I propose to develop a novel circuit quantum-electrodynamics (cQED) platform based on the 3D transmon qubit architecture. This platform utilizes the highly engineerable properties and long coherence times of these qubits. A central novel idea behind AQSuS is to exploit the spatial dependence of the naturally occurring dipolar interactions between the qubits to engineer the desired spin-spin interactions. This approach avoids the complicated wiring, typical for other cQED experiments and reduces the complexity of the experimental setup. The scheme is therefore directly scalable to larger systems. The experimental goals are:
1) Demonstrate analogue quantum simulation of an interacting spin system in 1D & 2D.
2) Establish methods to precisely initialize the state of the system, control the interactions and readout single qubit states and multi-qubit correlations.
3) Investigate unobserved quantum phenomena on 2D geometries e.g. kagome and triangular lattices.
4) Study open system dynamics with interacting spin systems.
AQSuS builds on my backgrounds in both superconducting qubits and quantum simulation with trapped-ions. With theory collaborators my young research group and I have recently published an article in PRB [9] describing and analysing the proposed platform. The ERC starting grant would allow me to open a big new research direction and capitalize on the foundations established over the last two years.
Max ERC Funding
1 498 515 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ArcheoDyn
Project Globular clusters as living fossils of the past of galaxies
Researcher (PI) Petrus VAN DE VEN
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), PE9, ERC-2016-COG
Summary Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Summary
Globular clusters (GCs) are enigmatic objects that hide a wealth of information. They are the living fossils of the history of their native galaxies and the record keepers of the violent events that made them change their domicile. This proposal aims to mine GCs as living fossils of galaxy evolution to address fundamental questions in astrophysics: (1) Do satellite galaxies merge as predicted by the hierarchical build-up of galaxies? (2) Which are the seeds of supermassive black holes in the centres of galaxies? (3) How did star formation originate in the earliest phases of galaxy formation? To answer these questions, novel population-dependent dynamical modelling techniques are required, whose development the PI has led over the past years. This uniquely positions him to take full advantage of the emerging wealth of chemical and kinematical data on GCs.
Following the tidal disruption of satellite galaxies, their dense GCs, and maybe even their nuclei, are left as the most visible remnants in the main galaxy. The hierarchical build-up of their new host galaxy can thus be unearthed by recovering the GCs’ orbits. However, currently it is unclear which of the GCs are accretion survivors. Actually, the existence of a central intermediate mass black hole (IMBH) or of multiple stellar populations in GCs might tell which ones are accreted. At the same time, detection of IMBHs is important as they are predicted seeds for supermassive black holes in galaxies; while the multiple stellar populations in GCs are vital witnesses to the extreme modes of star formation in the early Universe. However, for every putative dynamical IMBH detection so far there is a corresponding non-detection; also the origin of multiple stellar populations in GCs still lacks any uncontrived explanation. The synergy of novel techniques and exquisite data proposed here promises a breakthrough in this emerging field of dynamical archeology with GCs as living fossils of the past of galaxies.
Max ERC Funding
1 999 250 €
Duration
Start date: 2017-09-01, End date: 2022-08-31