Project acronym AGNES
Project ACTIVE AGEING – RESILIENCE AND EXTERNAL SUPPORT AS MODIFIERS OF THE DISABLEMENT OUTCOME
Researcher (PI) Taina Tuulikki RANTANEN
Host Institution (HI) JYVASKYLAN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), SH3, ERC-2015-AdG
Summary The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Summary
The goals are 1. To develop a scale assessing the diversity of active ageing with four dimensions that are ability (what people can do), activity (what people do do), ambition (what are the valued activities that people want to do), and autonomy (how satisfied people are with the opportunity to do valued activities); 2. To examine health and physical and psychological functioning as the determinants and social and build environment, resilience and personal skills as modifiers of active ageing; 3. To develop a multicomponent sustainable intervention aiming to promote active ageing (methods: counselling, information technology, help from volunteers); 4. To test the feasibility and effectiveness on the intervention; and 5. To study cohort effects on the phenotypes on the pathway to active ageing.
“If You Can Measure It, You Can Change It.” Active ageing assessment needs conceptual progress, which I propose to do. A quantifiable scale will be developed that captures the diversity of active ageing stemming from the WHO definition of active ageing as the process of optimizing opportunities for health and participation in the society for all people in line with their needs, goals and capacities as they age. I will collect cross-sectional data (N=1000, ages 75, 80 and 85 years) and model the pathway to active ageing with state-of-the art statistical methods. By doing this I will create novel knowledge on preconditions for active ageing. The collected cohort data will be compared to a pre-existing cohort data that was collected 25 years ago to obtain knowledge about changes over time in functioning of older people. A randomized controlled trial (N=200) will be conducted to assess the effectiveness of the envisioned intervention promoting active ageing through participation. The project will regenerate ageing research by launching a novel scale, by training young scientists, by creating new concepts and theory development and by producing evidence for active ageing promotion
Max ERC Funding
2 044 364 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AMETIST
Project Advanced III-V Materials and Processes Enabling Ultrahigh-efficiency ( 50%) Photovoltaics
Researcher (PI) Mircea Dorel GUINA
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Summary
Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Max ERC Funding
2 492 719 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym AncestralWeave
Project 1,000 ancient genomes: gene-economy innovation in cattle, sheep and goat
Researcher (PI) Daniel BRADLEY
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Advanced Grant (AdG), SH6, ERC-2019-ADG
Summary The genetic threads of goat, cattle and sheep ancestry have been woven by human breeding, environmental pressures, hybridisation and the chance effects of genetic drift. The ancestral weaves of these key animals intertwine with human creativity in the most profoundly innovative episodes of the human past. Three broad episodes of particular import were: initial domestications circa 11 kya in Southwest Asia; the intensification circa 6 kya of use of those animal products which are harvested without killing such as wool, milk and traction; and the development of exceptionally productive landraces, later formalized into breeds, in recent millennia. However, each of these is loosely defined in time and space, the key traits are often osteologically invisible, and the vectors of causality in their virtuous cycles of gene-economy innovation are completely unknown.
A combination of high coverage ancient whole genome data coupled with new analysis methods that allow efficient computation of genomewide locus genealogies will be used to untangle the threads of ancestry in sheep, cattle and goat across the whole genome in these transformative phases. Combining these with additional low coverage genomes generated from less preserved samples will generate a total set of 1,000 ancient animal genomes. These data will be unprecedented and will allow tracking of selection at trait genes, in order to detect human agency in breeding and, in collaboration with archaeologist partners, asking are there periods and places where threads of innovation coalesce. The project will also use ancient epigenetics to explore archaeological variation in gene activation patterns and will seek to understand the problematic build up of harmful mutations that threaten livestock today. With cognate disciplines, it will compare signals of animal mobility identifying distinct genetic strata correlating with archaeological horizons and affording the prospect of DNA-dating in future excavation.
Summary
The genetic threads of goat, cattle and sheep ancestry have been woven by human breeding, environmental pressures, hybridisation and the chance effects of genetic drift. The ancestral weaves of these key animals intertwine with human creativity in the most profoundly innovative episodes of the human past. Three broad episodes of particular import were: initial domestications circa 11 kya in Southwest Asia; the intensification circa 6 kya of use of those animal products which are harvested without killing such as wool, milk and traction; and the development of exceptionally productive landraces, later formalized into breeds, in recent millennia. However, each of these is loosely defined in time and space, the key traits are often osteologically invisible, and the vectors of causality in their virtuous cycles of gene-economy innovation are completely unknown.
A combination of high coverage ancient whole genome data coupled with new analysis methods that allow efficient computation of genomewide locus genealogies will be used to untangle the threads of ancestry in sheep, cattle and goat across the whole genome in these transformative phases. Combining these with additional low coverage genomes generated from less preserved samples will generate a total set of 1,000 ancient animal genomes. These data will be unprecedented and will allow tracking of selection at trait genes, in order to detect human agency in breeding and, in collaboration with archaeologist partners, asking are there periods and places where threads of innovation coalesce. The project will also use ancient epigenetics to explore archaeological variation in gene activation patterns and will seek to understand the problematic build up of harmful mutations that threaten livestock today. With cognate disciplines, it will compare signals of animal mobility identifying distinct genetic strata correlating with archaeological horizons and affording the prospect of DNA-dating in future excavation.
Max ERC Funding
2 499 199 €
Duration
Start date: 2020-12-01, End date: 2025-11-30
Project acronym ATOP
Project Atomically-engineered nonlinear photonics with two-dimensional layered material superlattices
Researcher (PI) zhipei SUN
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Summary
The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Max ERC Funding
2 442 448 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BioELCell
Project Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Researcher (PI) Orlando Rojas Gaona
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Summary
BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Max ERC Funding
2 486 182 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BRAIN2BRAIN
Project Towards two-person neuroscience
Researcher (PI) Riitta Kyllikki Hari
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), LS5, ERC-2008-AdG
Summary Humans interact with other people throughout their lives. This project aims to demonstrate that the complex social shaping of the human brain can be adequately tackled only by taking a leap from the conven-tional single-person neuroscience to two-person neuroscience. We will (1) develop a conceptual framework and experimental setups for two-person neuroscience, (2) apply time-sensitive methods for studies of two interacting persons, monitoring both brain and autonomic nervous activity to also cover the brain body connection, (3) use gaze as an index of subject s attention to simplify signal analysis in natural environments, and (4) apply insights from two-person neuroscience into disorders of social interaction. Brain activity will be recorded with millisecond-accurate whole-scalp (306-channel) magnetoencepha-lography (MEG), associated with EEG, and with the millimeter-accurate 3-tesla functional magnetic reso-nance imaging (fMRI). Heart rate, respiration, galvanic skin response, and pupil diameter inform about body function. A new psychophysiological interaction setting will be built, comprising a two-person eye-tracking system. Novel analysis methods will be developed to follow the interaction and possible synchronization of the two persons signals. This uncoventional approach crosses borders of neuroscience, social psychology, psychophysiology, psychiatry, medical imaging, and signal analysis, with intriguing connections to old philosophical questions, such as intersubjectivity and emphatic attunement. The results could open an unprecedented window into human human, instead of just brain brain, interactions, helping to understand also social disorders, such as autism and schizophrenia. Further applications include master apprentice and patient therapist relationships. Advancing from studies of single persons towards two-person neuroscience shows promise of a break-through in understanding the dynamic social shaping of human brain and mind.
Summary
Humans interact with other people throughout their lives. This project aims to demonstrate that the complex social shaping of the human brain can be adequately tackled only by taking a leap from the conven-tional single-person neuroscience to two-person neuroscience. We will (1) develop a conceptual framework and experimental setups for two-person neuroscience, (2) apply time-sensitive methods for studies of two interacting persons, monitoring both brain and autonomic nervous activity to also cover the brain body connection, (3) use gaze as an index of subject s attention to simplify signal analysis in natural environments, and (4) apply insights from two-person neuroscience into disorders of social interaction. Brain activity will be recorded with millisecond-accurate whole-scalp (306-channel) magnetoencepha-lography (MEG), associated with EEG, and with the millimeter-accurate 3-tesla functional magnetic reso-nance imaging (fMRI). Heart rate, respiration, galvanic skin response, and pupil diameter inform about body function. A new psychophysiological interaction setting will be built, comprising a two-person eye-tracking system. Novel analysis methods will be developed to follow the interaction and possible synchronization of the two persons signals. This uncoventional approach crosses borders of neuroscience, social psychology, psychophysiology, psychiatry, medical imaging, and signal analysis, with intriguing connections to old philosophical questions, such as intersubjectivity and emphatic attunement. The results could open an unprecedented window into human human, instead of just brain brain, interactions, helping to understand also social disorders, such as autism and schizophrenia. Further applications include master apprentice and patient therapist relationships. Advancing from studies of single persons towards two-person neuroscience shows promise of a break-through in understanding the dynamic social shaping of human brain and mind.
Max ERC Funding
2 489 643 €
Duration
Start date: 2009-01-01, End date: 2014-12-31
Project acronym CHALLENGE
Project Persistent bullying cases: towards tailored intervention approaches to maximize efficiency
Researcher (PI) Christina SALMIVALLI
Host Institution (HI) TURUN YLIOPISTO
Country Finland
Call Details Advanced Grant (AdG), SH3, ERC-2019-ADG
Summary Bullying in schools is widespread, with adverse effects on youth and high costs for societies. Research on bullying prevention has so far focused on average effects of anti-bullying programs and mainly concerned universal, preventive measures. While important, this has overshadowed attempts to uncover how exactly school personnel intervene in particular bullying cases and when and why that fails. CHALLENGE will open up new research horizons by shifting the focus from average program effects to the characteristics and conditions of youth who remain victimized or continue bullying despite targeted interventions. The next big questions in the field are tackled in four work packages:
WP1 uncovers the key features of persistent bullying, such as the extent to which it is due to school-level factors or rather varies across bullying cases (within schools).
WP2 elucidates the plight of persistent victims by testing why victimized youth are most maladjusted in contexts where the overall level of victimization is decreasing (healthy context paradox, Garandeau & Salmivalli, 2019).
WP3 tests the efficacy of different targeted interventions in real-life conditions, uncovering challenge factors that increase the risk of a bullying case remaining unresolved. Moreover, it tests how youth characteristics affect their cognitive, emotional and motivational responses to different interventions.
WP4 utilizes molecular genetics to test genetic susceptibility to intervention effects at the individual level.
CHALLENGE uses quantitative, qualitative, and DNA analyses, combines longitudinal and experimental designs, and harnesses novel tools to collect real-time intervention data and to register children’s responses to interventions. It bridges the perspectives of developmental and social psychology, child psychiatry, and genetics, builds theory on persistent bullying and enables the development of tailored measures for specific target groups where available interventions have failed
Summary
Bullying in schools is widespread, with adverse effects on youth and high costs for societies. Research on bullying prevention has so far focused on average effects of anti-bullying programs and mainly concerned universal, preventive measures. While important, this has overshadowed attempts to uncover how exactly school personnel intervene in particular bullying cases and when and why that fails. CHALLENGE will open up new research horizons by shifting the focus from average program effects to the characteristics and conditions of youth who remain victimized or continue bullying despite targeted interventions. The next big questions in the field are tackled in four work packages:
WP1 uncovers the key features of persistent bullying, such as the extent to which it is due to school-level factors or rather varies across bullying cases (within schools).
WP2 elucidates the plight of persistent victims by testing why victimized youth are most maladjusted in contexts where the overall level of victimization is decreasing (healthy context paradox, Garandeau & Salmivalli, 2019).
WP3 tests the efficacy of different targeted interventions in real-life conditions, uncovering challenge factors that increase the risk of a bullying case remaining unresolved. Moreover, it tests how youth characteristics affect their cognitive, emotional and motivational responses to different interventions.
WP4 utilizes molecular genetics to test genetic susceptibility to intervention effects at the individual level.
CHALLENGE uses quantitative, qualitative, and DNA analyses, combines longitudinal and experimental designs, and harnesses novel tools to collect real-time intervention data and to register children’s responses to interventions. It bridges the perspectives of developmental and social psychology, child psychiatry, and genetics, builds theory on persistent bullying and enables the development of tailored measures for specific target groups where available interventions have failed
Max ERC Funding
2 424 001 €
Duration
Start date: 2020-10-01, End date: 2025-09-30
Project acronym CHROMARRANGE
Project Programmed and unprogrammed genomic rearrangements during the evolution of yeast species
Researcher (PI) Kenneth Henry Wolfe
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Country Ireland
Call Details Advanced Grant (AdG), LS2, ERC-2010-AdG_20100317
Summary By detailed evolutionary comparisons among multiple sequenced yeast genomes, we have identified several unusual regions where our preliminary evidence suggests that previously unknown molecular biology phenomena, involving rearrangement of genomic DNA, are occurring. I now propose to use a combination of dry-lab and wet-lab experimental approaches to characterize these regions and phenomena further. One region is a 24-kb section of chromosome XIV that appears to undergo recurrent 'flip/flop' inversion between two isomers at a fairly high rate in five species as diverse as Saccharomyces cerevisiae and Naumovia castellii, leading to a 1:1 ratio of the two isomers in each species. We hypothesize that this region is the site of a programmed DNA rearrangement analogous to mating-type switching. We have also identified two new genes related to the mating-type switching endonuclease HO, but different from it, that are potentially involved in rearrangement processes though not necessarily the inversion described above. We will determine the sites of action of these endonucleases. Separately, we have found evidence for a process of recurrent deletion of DNA from regions flanking the mating-type (MAT) locus in all yeast species that are descended from the whole-genome duplication (WGD) event, causing continual transpositions of genes from beside MAT to other locations in the genome. In related computational work, we propose to investigate an hypothesis that evolutionary loss of the MATa2 transcriptional activator may have been the cause of the WGD event.
Summary
By detailed evolutionary comparisons among multiple sequenced yeast genomes, we have identified several unusual regions where our preliminary evidence suggests that previously unknown molecular biology phenomena, involving rearrangement of genomic DNA, are occurring. I now propose to use a combination of dry-lab and wet-lab experimental approaches to characterize these regions and phenomena further. One region is a 24-kb section of chromosome XIV that appears to undergo recurrent 'flip/flop' inversion between two isomers at a fairly high rate in five species as diverse as Saccharomyces cerevisiae and Naumovia castellii, leading to a 1:1 ratio of the two isomers in each species. We hypothesize that this region is the site of a programmed DNA rearrangement analogous to mating-type switching. We have also identified two new genes related to the mating-type switching endonuclease HO, but different from it, that are potentially involved in rearrangement processes though not necessarily the inversion described above. We will determine the sites of action of these endonucleases. Separately, we have found evidence for a process of recurrent deletion of DNA from regions flanking the mating-type (MAT) locus in all yeast species that are descended from the whole-genome duplication (WGD) event, causing continual transpositions of genes from beside MAT to other locations in the genome. In related computational work, we propose to investigate an hypothesis that evolutionary loss of the MATa2 transcriptional activator may have been the cause of the WGD event.
Max ERC Funding
1 516 960 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym CODE
Project Condensation in designed systems
Researcher (PI) Paeivi Elina Toermae
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Summary
"Quantum coherent phenomena, especially marcoscopic quantum coherence, are among the most striking predictions of quantum mechanics. They have lead to remarkable applications such as lasers and modern optical technologies, and in the future, breakthroughs such as quantum information processing are envisioned. Macroscopic quantum coherence is manifested in Bose-Einstein condensation (BEC), superfluidity, and superconductivity, which have been observed in a variety of systems and continue to be at the front line of scientific research. Here my objective is to extend the realm of Bose-Einstein condensation into new conceptual and practical directions. I focus on the role of a hybrid character of the object that condenses and on the role of non-equilibrium in the BEC phenomenon. The work is mostly theoretical but has also an experimental part. I study two new types of hybrids, fundamentally different from each other. First, I consider pairing and superfluidity in a mixed geometry. Experimental realization of mixed geometries is becoming feasible in ultracold gases. Second, I explore the possibility of finding novel hybrids of light and matter excitations that may display condensation. By combining insight from these two cases, my goal is to understand how the hybrid and non-equilibrium nature can be exploited to design desirable properties, such as high critical temperatures. In particular, in case of the new light-matter hybrids, the goal is to provide realistic scenarios for, and also experimentally demonstrate, a room temperature BEC."
Max ERC Funding
1 559 608 €
Duration
Start date: 2013-12-01, End date: 2018-11-30