Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ABIONYS
Project Artificial Enzyme Modules as Tools in a Tailor-made Biosynthesis
Researcher (PI) Jan DESKA
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE5, ERC-2019-COG
Summary In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Summary
In order to tackle some of the prime societal challenges of this century, science has to urgently provide effective tools addressing the redesign of chemical value chains through the exploitation of novel, bio-based raw materials, and the discovery and implementation of more resource-efficient production platforms. Nature will inevitably play a pivotal role in the imminent transformation of industrial strategies, and the recent bioeconomy approaches can only be regarded as initial step towards a sustainable future. Operating at the interface between chemistry and life sciences, my ABIONYS will fundamentally challenge the widely held distinction separating chemical from biosynthesis, and will deliver the first proof-of-concept where abiotic reactions act as productive puzzle pieces in biosynthetic arrangements. On the basis of our previous ground-breaking discoveries on artificial enzyme functions, I will create a significantly extended toolbox of biocatalysis modules by applying protein-based interpretations of synthetically crucial but non-natural reactions i.e. transformations that are in no way biosynthetically encoded in living organisms. My research will exploit these tools in multi-enzyme cascades for the preparation of complex organic target structures, not only to highlight the great synthetic potential of these approaches, but also to lay the groundwork for in vivo implementations. Eventually, the knowledge gathered from enzyme discovery and cascade design will enable to create an unprecedented class of bioproduction systems, where the genetic incorporation of artificial enzyme functions into recombinant microbial host organisms will yield tailor-made cellular factories. Combining classical organic synthesis strategies with the power of modern biotechnology, ABIONYS is going to transform the way we synthesize complex and functional building blocks by allowing us to encode organic chemistry thinking into living production platforms.
Max ERC Funding
1 995 707 €
Duration
Start date: 2020-11-01, End date: 2025-10-31
Project acronym ACHIEVE
Project Advanced Cellular Hierarchical Tissue-Imitations based on Excluded Volume Effect
Researcher (PI) Dimitrios ZEVGOLIS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2019-COG
Summary ACHIEVE focuses on the application of Excluded Volume Effect in cell culture systems in order to enhance Extracellular Matrix (ECM) deposition. It represents a new horizon in in vitro cell culture which will address major challenges in medical advancement and food security. ACHIEVE will elucidate extracellular processes which occur during tissue generation, identifying favourable conditions for optimum tissue cultivation in vitro. These results will be applied in the diverse fields of regenerative medicine, drug discovery and cellular agriculture which all require advancements in in vitro tissue engineering to overcome current bottlenecks. Effective in vitro tissue culture is currently limited by lengthy culture periods. An inability to maintain physiologic (in vivo) conditions during this lengthy in vitro culture leads to cellular phenotype drift, ultimately resulting in generation of an undesired tissue. Enhanced tissue generation in vitro will greatly reduce culture times and costs, effecting improved in vitro tissue substitutes which remain true to their original phenotype. The research will be addressed under four work-packages. WP1 will investigate biochemical, biophysical and biological responses to varying culture conditions; WP 2, 3 and 4 will apply results in the fields of Tissue Engineering, Drug Discovery and Cellular Agriculture respectively. Research will involve extensive characterisation of derived- and stem-cell cultures in varying conditions of expansion and relevant health and safety and preclinical testing. The five year programme will be undertaken at the National University of Ireland, Galway, a centre of excellence in tissue engineering research, at a cost of € 2,439,270.
Summary
ACHIEVE focuses on the application of Excluded Volume Effect in cell culture systems in order to enhance Extracellular Matrix (ECM) deposition. It represents a new horizon in in vitro cell culture which will address major challenges in medical advancement and food security. ACHIEVE will elucidate extracellular processes which occur during tissue generation, identifying favourable conditions for optimum tissue cultivation in vitro. These results will be applied in the diverse fields of regenerative medicine, drug discovery and cellular agriculture which all require advancements in in vitro tissue engineering to overcome current bottlenecks. Effective in vitro tissue culture is currently limited by lengthy culture periods. An inability to maintain physiologic (in vivo) conditions during this lengthy in vitro culture leads to cellular phenotype drift, ultimately resulting in generation of an undesired tissue. Enhanced tissue generation in vitro will greatly reduce culture times and costs, effecting improved in vitro tissue substitutes which remain true to their original phenotype. The research will be addressed under four work-packages. WP1 will investigate biochemical, biophysical and biological responses to varying culture conditions; WP 2, 3 and 4 will apply results in the fields of Tissue Engineering, Drug Discovery and Cellular Agriculture respectively. Research will involve extensive characterisation of derived- and stem-cell cultures in varying conditions of expansion and relevant health and safety and preclinical testing. The five year programme will be undertaken at the National University of Ireland, Galway, a centre of excellence in tissue engineering research, at a cost of € 2,439,270.
Max ERC Funding
2 076 770 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Country Ireland
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AMI
Project Animals Make identities. The Social Bioarchaeology of Late Mesolithic and Early Neolithic Cemeteries in North-East Europe
Researcher (PI) Kristiina MANNERMAA
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), SH6, ERC-2019-COG
Summary AMI aims to provide a novel interpretation of social links between humans and animals in hunter-gatherer cemeteries in North-East Europe, c. 9000–7500 years ago. AMI brings together cutting-edge developments in bioarchaeological science and the latest understanding of how people’s identities form in order to study the relationships between humans and animals. Grave materials and human remains will be studied from the viewpoint of process rather than as isolated objects, and will be interpreted through their histories.
The main objectives are
1) Synthesize the animal related bioarchaeological materials in mortuary contexts in North-East Europe,
2) Conduct a systematic multimethodological analysis of the animal-derived artefacts and to study them as actors in human social identity construction,
3) Reconstruct the individual life histories of humans, animals, and animal-derived artefacts in the cemeteries, and
4) Produce models for the reconstruction of social identities based on the data from the bioanalyses, literature, and GIS.
Various contextual, qualitative and quantitative biodata from animals and humans will be analysed and compared. Correlations and differences will be explored. Intra-site spatial analyses and data already published on cemeteries will contribute significantly to the research. Ethnographic information about recent hunter-gatherers from circumpolar regions gathered from literature will support the interpretation of the results from these analyses.
The research material derives from almost 300 burials from eight sites in North-East Europe and includes, for example, unique materials from Russia that have not previously been available for modern multidisciplinary research. The project will make a significant contribution to our understanding of how humans living in the forests of North-East Europe adapted the animals they shared their environment with into their social and ideological realities and practices.
Summary
AMI aims to provide a novel interpretation of social links between humans and animals in hunter-gatherer cemeteries in North-East Europe, c. 9000–7500 years ago. AMI brings together cutting-edge developments in bioarchaeological science and the latest understanding of how people’s identities form in order to study the relationships between humans and animals. Grave materials and human remains will be studied from the viewpoint of process rather than as isolated objects, and will be interpreted through their histories.
The main objectives are
1) Synthesize the animal related bioarchaeological materials in mortuary contexts in North-East Europe,
2) Conduct a systematic multimethodological analysis of the animal-derived artefacts and to study them as actors in human social identity construction,
3) Reconstruct the individual life histories of humans, animals, and animal-derived artefacts in the cemeteries, and
4) Produce models for the reconstruction of social identities based on the data from the bioanalyses, literature, and GIS.
Various contextual, qualitative and quantitative biodata from animals and humans will be analysed and compared. Correlations and differences will be explored. Intra-site spatial analyses and data already published on cemeteries will contribute significantly to the research. Ethnographic information about recent hunter-gatherers from circumpolar regions gathered from literature will support the interpretation of the results from these analyses.
The research material derives from almost 300 burials from eight sites in North-East Europe and includes, for example, unique materials from Russia that have not previously been available for modern multidisciplinary research. The project will make a significant contribution to our understanding of how humans living in the forests of North-East Europe adapted the animals they shared their environment with into their social and ideological realities and practices.
Max ERC Funding
1 992 839 €
Duration
Start date: 2020-04-01, End date: 2025-03-31
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ASTROFLOW
Project The influence of stellar outflows on exoplanetary mass loss
Researcher (PI) Aline VIDOTTO
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Summary
ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Max ERC Funding
1 999 956 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CATCH
Project Cross-dimensional Activation of Two-Dimensional Semiconductors for Photocatalytic Heterojunctions
Researcher (PI) Wei CAO
Host Institution (HI) OULUN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), PE8, ERC-2020-COG
Summary Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.
Summary
Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.
Max ERC Funding
1 999 946 €
Duration
Start date: 2021-05-01, End date: 2026-04-30
Project acronym CAVITYQPD
Project Cavity quantum phonon dynamics
Researcher (PI) Mika Antero Sillanpaeae
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Country Finland
Call Details Consolidator Grant (CoG), PE3, ERC-2013-CoG
Summary "Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Summary
"Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Max ERC Funding
2 004 283 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym CGCglasmaQGP
Project The nonlinear high energy regime of Quantum Chromodynamics
Researcher (PI) Tuomas Veli Valtteri Lappi
Host Institution (HI) JYVASKYLAN YLIOPISTO
Country Finland
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary "This proposal concentrates on Quantum Chromodynamics (QCD) in its least well understood "final frontier": the high energy limit. The aim is to treat the formation of quark gluon plasma in relativistic nuclear collisions together with other high energy processes in a consistent QCD framework. This project is topical now in order to fully understand the results from the maturing LHC heavy ion program. The high energy regime is characterized by a high density of gluons, whose nonlinear interactions are beyond the reach of simple perturbative calculations. High energy particles also propagate nearly on the light cone, unaccessible to Euclidean lattice calculations. The nonlinear interactions at high density lead to the phenomenon of gluon saturation. The emergence of the "saturation scale", a semihard typical transverse momentum, enables a weak coupling expansion around a nonperturbatively large color field. This project aims to make progress both in collider phenomenology and in more conceptual aspects of nonabelian gauge field dynamics at high energy density:
1. Significant advances towards higher order accuracy will be made in cross section calculations for processes where a dilute probe collides with the strong color field of a high energy nucleus.
2. The quantum fluctuations around the strong color fields in the initial stages of a relativistic heavy ion collision will be analyzed with a new numerical method based on an explicit linearization of the equations of motion, maintaining a well defined weak coupling limit.
3. Initial conditions for fluid dynamical descriptions of the quark gluon plasma phase in heavy ion collisions will be obtained from a constrained QCD calculation.
We propose to achieve these goals with modern analytical and numerical methods, on which the P.I. is a leading expert. This project would represent a leap in the field towards better quantitative first principles understanding of QCD in a new kinematical domain."
Summary
"This proposal concentrates on Quantum Chromodynamics (QCD) in its least well understood "final frontier": the high energy limit. The aim is to treat the formation of quark gluon plasma in relativistic nuclear collisions together with other high energy processes in a consistent QCD framework. This project is topical now in order to fully understand the results from the maturing LHC heavy ion program. The high energy regime is characterized by a high density of gluons, whose nonlinear interactions are beyond the reach of simple perturbative calculations. High energy particles also propagate nearly on the light cone, unaccessible to Euclidean lattice calculations. The nonlinear interactions at high density lead to the phenomenon of gluon saturation. The emergence of the "saturation scale", a semihard typical transverse momentum, enables a weak coupling expansion around a nonperturbatively large color field. This project aims to make progress both in collider phenomenology and in more conceptual aspects of nonabelian gauge field dynamics at high energy density:
1. Significant advances towards higher order accuracy will be made in cross section calculations for processes where a dilute probe collides with the strong color field of a high energy nucleus.
2. The quantum fluctuations around the strong color fields in the initial stages of a relativistic heavy ion collision will be analyzed with a new numerical method based on an explicit linearization of the equations of motion, maintaining a well defined weak coupling limit.
3. Initial conditions for fluid dynamical descriptions of the quark gluon plasma phase in heavy ion collisions will be obtained from a constrained QCD calculation.
We propose to achieve these goals with modern analytical and numerical methods, on which the P.I. is a leading expert. This project would represent a leap in the field towards better quantitative first principles understanding of QCD in a new kinematical domain."
Max ERC Funding
1 935 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30