Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ACHIEVE
Project Advanced Cellular Hierarchical Tissue-Imitations based on Excluded Volume Effect
Researcher (PI) Dimitrios ZEVGOLIS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2019-COG
Summary ACHIEVE focuses on the application of Excluded Volume Effect in cell culture systems in order to enhance Extracellular Matrix (ECM) deposition. It represents a new horizon in in vitro cell culture which will address major challenges in medical advancement and food security. ACHIEVE will elucidate extracellular processes which occur during tissue generation, identifying favourable conditions for optimum tissue cultivation in vitro. These results will be applied in the diverse fields of regenerative medicine, drug discovery and cellular agriculture which all require advancements in in vitro tissue engineering to overcome current bottlenecks. Effective in vitro tissue culture is currently limited by lengthy culture periods. An inability to maintain physiologic (in vivo) conditions during this lengthy in vitro culture leads to cellular phenotype drift, ultimately resulting in generation of an undesired tissue. Enhanced tissue generation in vitro will greatly reduce culture times and costs, effecting improved in vitro tissue substitutes which remain true to their original phenotype. The research will be addressed under four work-packages. WP1 will investigate biochemical, biophysical and biological responses to varying culture conditions; WP 2, 3 and 4 will apply results in the fields of Tissue Engineering, Drug Discovery and Cellular Agriculture respectively. Research will involve extensive characterisation of derived- and stem-cell cultures in varying conditions of expansion and relevant health and safety and preclinical testing. The five year programme will be undertaken at the National University of Ireland, Galway, a centre of excellence in tissue engineering research, at a cost of € 2,439,270.
Summary
ACHIEVE focuses on the application of Excluded Volume Effect in cell culture systems in order to enhance Extracellular Matrix (ECM) deposition. It represents a new horizon in in vitro cell culture which will address major challenges in medical advancement and food security. ACHIEVE will elucidate extracellular processes which occur during tissue generation, identifying favourable conditions for optimum tissue cultivation in vitro. These results will be applied in the diverse fields of regenerative medicine, drug discovery and cellular agriculture which all require advancements in in vitro tissue engineering to overcome current bottlenecks. Effective in vitro tissue culture is currently limited by lengthy culture periods. An inability to maintain physiologic (in vivo) conditions during this lengthy in vitro culture leads to cellular phenotype drift, ultimately resulting in generation of an undesired tissue. Enhanced tissue generation in vitro will greatly reduce culture times and costs, effecting improved in vitro tissue substitutes which remain true to their original phenotype. The research will be addressed under four work-packages. WP1 will investigate biochemical, biophysical and biological responses to varying culture conditions; WP 2, 3 and 4 will apply results in the fields of Tissue Engineering, Drug Discovery and Cellular Agriculture respectively. Research will involve extensive characterisation of derived- and stem-cell cultures in varying conditions of expansion and relevant health and safety and preclinical testing. The five year programme will be undertaken at the National University of Ireland, Galway, a centre of excellence in tissue engineering research, at a cost of € 2,439,270.
Max ERC Funding
2 076 770 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Country Ireland
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym ASTROFLOW
Project The influence of stellar outflows on exoplanetary mass loss
Researcher (PI) Aline VIDOTTO
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Summary
ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Max ERC Funding
1 999 956 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CIPHER
Project CIPHER: Hip Hop Interpellation (Le Conseil International pour Hip Hop et Recherche / The International Council for Hip Hop Studies)
Researcher (PI) J. Griffith ROLLEFSON
Host Institution (HI) UNIVERSITY COLLEGE CORK - NATIONAL UNIVERSITY OF IRELAND, CORK
Country Ireland
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary CIPHER will launch the global research initiative, Hip Hop Interpellation, pilot a new semantic digital/ethnographic web methodology, and codify the emergent discipline of global hip hop studies. It addresses the central question: why has this highly localized and authenticizing African American music translated so easily to far-flung communities and contexts around the globe? Through this specific question the project attempts to understand the foundational and broadly transferable question: how are globalization and localization related? To answer these questions CIPHER posits the Hip Hop Interpellation thesis, that hip hop spreads not as a copy of an African American original, but, through its performance of knowledge, emerges as an always already constituent part of local knowledge and practice. The theorization thus moves beyond the “hailing practices” described by Althusser’s theory of interpellation—the discursive webs that coerce ideological incorporation—to describing an interpolation that locates other histories within and through hip hop’s performed knowledges.
CIPHER’s semantic web methodology tests this thesis, tracking how hip hop memes—slogans, anthems, and icons—are simultaneously produced by people and produce people. This research clears the conceptual impasse of structural “cultural imperialism” vs. agentic “cultural appropriation” debates and instrumentalizes the methodological distance between ethnographic specificity and big data generality. It does so by creating a feedback loop between digital humanities methods (crowd sourcing, semantic tagging, computational stylometry) and ethnographic fieldwork techniques (interviews, musical analysis, participant observation). The result will be an iterative map of Hip Hop Interpellation/Interpolation created by stakeholders that is transformational of our understanding of culture and/as cultural production and transferable to pressing questions about globalization and l’exception culturelle.
Summary
CIPHER will launch the global research initiative, Hip Hop Interpellation, pilot a new semantic digital/ethnographic web methodology, and codify the emergent discipline of global hip hop studies. It addresses the central question: why has this highly localized and authenticizing African American music translated so easily to far-flung communities and contexts around the globe? Through this specific question the project attempts to understand the foundational and broadly transferable question: how are globalization and localization related? To answer these questions CIPHER posits the Hip Hop Interpellation thesis, that hip hop spreads not as a copy of an African American original, but, through its performance of knowledge, emerges as an always already constituent part of local knowledge and practice. The theorization thus moves beyond the “hailing practices” described by Althusser’s theory of interpellation—the discursive webs that coerce ideological incorporation—to describing an interpolation that locates other histories within and through hip hop’s performed knowledges.
CIPHER’s semantic web methodology tests this thesis, tracking how hip hop memes—slogans, anthems, and icons—are simultaneously produced by people and produce people. This research clears the conceptual impasse of structural “cultural imperialism” vs. agentic “cultural appropriation” debates and instrumentalizes the methodological distance between ethnographic specificity and big data generality. It does so by creating a feedback loop between digital humanities methods (crowd sourcing, semantic tagging, computational stylometry) and ethnographic fieldwork techniques (interviews, musical analysis, participant observation). The result will be an iterative map of Hip Hop Interpellation/Interpolation created by stakeholders that is transformational of our understanding of culture and/as cultural production and transferable to pressing questions about globalization and l’exception culturelle.
Max ERC Funding
1 990 526 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym CutLoops
Project Loop amplitudes in quantum field theory
Researcher (PI) Ruth Britto
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary The traditional formulation of relativistic quantum theory is ill-equipped to handle the range of difficult computations needed to describe particle collisions at the Large Hadron Collider (LHC) within a suitable time frame. Yet, recent work shows that probability amplitudes in quantum gauge field theories, such as those describing the Standard Model and its extensions, take surprisingly simple forms. The simplicity indicates deep structure in gauge theory that has already led to dramatic computational improvements, but remains to be fully understood. For precision calculations and investigations of the deep structure of gauge theory, a comprehensive method for computing multi-loop amplitudes systematically and efficiently must be found.
The goal of this proposal is to construct a new and complete approach to computing amplitudes from a detailed understanding of their singularities, based on prior successes of so-called on-shell methods combined with the latest developments in the mathematics of Feynman integrals. Scattering processes relevant to the LHC and to formal investigations of quantum field theory will be computed within the new framework.
Summary
The traditional formulation of relativistic quantum theory is ill-equipped to handle the range of difficult computations needed to describe particle collisions at the Large Hadron Collider (LHC) within a suitable time frame. Yet, recent work shows that probability amplitudes in quantum gauge field theories, such as those describing the Standard Model and its extensions, take surprisingly simple forms. The simplicity indicates deep structure in gauge theory that has already led to dramatic computational improvements, but remains to be fully understood. For precision calculations and investigations of the deep structure of gauge theory, a comprehensive method for computing multi-loop amplitudes systematically and efficiently must be found.
The goal of this proposal is to construct a new and complete approach to computing amplitudes from a detailed understanding of their singularities, based on prior successes of so-called on-shell methods combined with the latest developments in the mathematics of Feynman integrals. Scattering processes relevant to the LHC and to formal investigations of quantum field theory will be computed within the new framework.
Max ERC Funding
1 954 065 €
Duration
Start date: 2015-10-01, End date: 2021-08-31
Project acronym DBSModel
Project Multiscale Modelling of the Neuromuscular System for Closed Loop Deep Brain Stimulation
Researcher (PI) Madeleine Mary Lowery
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Deep brain stimulation (DBS) is an effective therapy for treating the symptoms of Parkinson’s disease (PD). Despite its success, the mechanisms of DBS are not understood and there is a need to improve DBS to improve long-term stimulation in a wider patient population, limit side-effects, and extend battery life. Currently DBS operates in ‘open-loop’, with stimulus parameters empirically set. Closed-loop DBS, which adjusts parameters based on the state of the system, has the potential to overcome current limitations to increase therapeutic efficacy while reducing side-effects, costs and energy. Several key questions need to be addressed before closed loop DBS can be implemented clinically.
This research will develop a new multiscale model of the neuromuscular system for closed-loop DBS. The model will simulate neural sensing and stimulation on a scale not previously considered, encompassing the electric field around the electrode, the effect on individual neurons and neural networks, and generation of muscle force. This will involve integration across multiple temporal and spatial scales, in a complex system with incomplete knowledge of system variables. Experiments will be conducted to validate the model, and identify new biomarkers of neural activity that can used with signals from the brain to enable continuous symptom monitoring. The model will be used to design a new control strategy for closed-loop DBS that can accommodate the nonlinear nature of the system, and short- and long-term changes in system behavior.
Though challenging, this research will provide new insights into the changes that take place in PD and the mechanisms by which DBS exerts its therapeutic influence. This knowledge will be used to design a new strategy for closed-loop DBS, ready for testing in patients, with the potential to significantly improve patient outcomes in PD and fundamentally change the way in which implanted devices utilise electrical stimulation to modulate neural activity.
Summary
Deep brain stimulation (DBS) is an effective therapy for treating the symptoms of Parkinson’s disease (PD). Despite its success, the mechanisms of DBS are not understood and there is a need to improve DBS to improve long-term stimulation in a wider patient population, limit side-effects, and extend battery life. Currently DBS operates in ‘open-loop’, with stimulus parameters empirically set. Closed-loop DBS, which adjusts parameters based on the state of the system, has the potential to overcome current limitations to increase therapeutic efficacy while reducing side-effects, costs and energy. Several key questions need to be addressed before closed loop DBS can be implemented clinically.
This research will develop a new multiscale model of the neuromuscular system for closed-loop DBS. The model will simulate neural sensing and stimulation on a scale not previously considered, encompassing the electric field around the electrode, the effect on individual neurons and neural networks, and generation of muscle force. This will involve integration across multiple temporal and spatial scales, in a complex system with incomplete knowledge of system variables. Experiments will be conducted to validate the model, and identify new biomarkers of neural activity that can used with signals from the brain to enable continuous symptom monitoring. The model will be used to design a new control strategy for closed-loop DBS that can accommodate the nonlinear nature of the system, and short- and long-term changes in system behavior.
Though challenging, this research will provide new insights into the changes that take place in PD and the mechanisms by which DBS exerts its therapeutic influence. This knowledge will be used to design a new strategy for closed-loop DBS, ready for testing in patients, with the potential to significantly improve patient outcomes in PD and fundamentally change the way in which implanted devices utilise electrical stimulation to modulate neural activity.
Max ERC Funding
1 999 474 €
Duration
Start date: 2015-08-01, End date: 2021-07-31
Project acronym INTEGRATE
Project Personalised Medicine for Intervertebral Disc Regeneration- Integrating Profiling, Predictive Modelling and Gene Activated Biomaterials
Researcher (PI) Conor Buckley
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2019-COG
Summary Lower back pain is a global epidemiological and socioeconomic problem. Biomaterial and cell-based therapies have been pursued for the treatment of degenerated intervertebral disc (IVD), with a number of clinical trials underway. However, the degenerated intervertebral disc has a distinct environment (e.g. altered oxygen, glucose, acidity, inflammatory cytokine levels) that is unique to an individual (i.e. patient-specific) and will ultimately determine the likelihood and rate at which regeneration can occur. A “one size fits all” approach will lead to the failure to demonstrate efficacy of advanced therapies, as they are not being designed or personalised for individual patients. This proposal envisions a future whereby advanced gene activated cell therapies are personalised (targeting regeneration or modulating inflammation) to treat back pain based on knowing the individuals unique disc microenvironment. This will be achieved through profiling of individual patient disc microenvironmental factors, with in vitro screening and in silico modelling to design cell therapies and predict regeneration outcomes (Aim 1) combined with the development of tailored functionalised gene activated biomaterials (Aim 2), to enhance matrix formation and modulate the inflammatory processes (Aim 3). Gene-based therapy offers several advantages over direct delivery of proteins or small molecules, among them the possibility of sustained efficacy and endogenous synthesis of growth factors or suppression of inflammatory factors and pathways. The platform technology (personalised gene activated biomaterials to regulate regeneration and inflammation) and knowledge (tailoring cell therapies to suit patient-specific microenvironments) generated through this research are beyond the current state-of-the-art and will provide a significant transformative scientific and clinical step change opening new horizons in minimally-invasive therapeutic strategies.
Summary
Lower back pain is a global epidemiological and socioeconomic problem. Biomaterial and cell-based therapies have been pursued for the treatment of degenerated intervertebral disc (IVD), with a number of clinical trials underway. However, the degenerated intervertebral disc has a distinct environment (e.g. altered oxygen, glucose, acidity, inflammatory cytokine levels) that is unique to an individual (i.e. patient-specific) and will ultimately determine the likelihood and rate at which regeneration can occur. A “one size fits all” approach will lead to the failure to demonstrate efficacy of advanced therapies, as they are not being designed or personalised for individual patients. This proposal envisions a future whereby advanced gene activated cell therapies are personalised (targeting regeneration or modulating inflammation) to treat back pain based on knowing the individuals unique disc microenvironment. This will be achieved through profiling of individual patient disc microenvironmental factors, with in vitro screening and in silico modelling to design cell therapies and predict regeneration outcomes (Aim 1) combined with the development of tailored functionalised gene activated biomaterials (Aim 2), to enhance matrix formation and modulate the inflammatory processes (Aim 3). Gene-based therapy offers several advantages over direct delivery of proteins or small molecules, among them the possibility of sustained efficacy and endogenous synthesis of growth factors or suppression of inflammatory factors and pathways. The platform technology (personalised gene activated biomaterials to regulate regeneration and inflammation) and knowledge (tailoring cell therapies to suit patient-specific microenvironments) generated through this research are beyond the current state-of-the-art and will provide a significant transformative scientific and clinical step change opening new horizons in minimally-invasive therapeutic strategies.
Max ERC Funding
1 999 543 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym JointPrinting
Project 3D Printing of Cell Laden Biomimetic Materials and Biomolecules for Joint Regeneration
Researcher (PI) Daniel John Kelly
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2014-CoG
Summary Osteoarthritis (OA) is a serious disease of the joints affecting nearly 10% of the population worldwide. Realising an efficacious therapeutic solution for treating OA remains one of the greatest challenges in the field of orthopaedic medicine. This proposal envisions a future where 3D bioprinting systems located in hospitals will provide ‘off-the-shelf’, patient-specific biological implants to treat diseases such as OA. To realise this vision, this project will use 3D bioprinting to generate anatomically accurate, biomimetic constructs that can be used to regenerate both the cartilage and bone in a diseased joint. The first aim of this proposal is to print a mesenchymal stem cell laden biomaterial that is both immediately load bearing and can facilitate the regeneration of articular cartilage in vivo, such that the bioprinted construct will not require in vitro maturation prior to implantation. Mechanical function will be realised by integrating an interpenetrating network hydrogel into a 3D printed polymeric scaffold, while chondro-inductivity will be enhanced by the spatially-defined incorporation of cartilage extracellular matrix components and chondrogenic growth factors into the bioprinted construct. The second aim of the proposal is to use 3D bioprinting to create a cell-free, composite construct to facilitate regeneration of the bony region of a large osteochondral defect, where vascularization will be accelerated by immobilizing spatial gradients of vascular endothelial growth factor into the implant. The third aim of the proposal is to scale-up the proposed 3D bioprinted construct to enable whole joint regeneration. Finite element modelling will be used determine the optimal structural characteristics of the scaled-up implant for it to fulfil its required mechanical function. If successful, such an implant would form the basis of a truly transformative therapy for treating degenerative joint disease.
Summary
Osteoarthritis (OA) is a serious disease of the joints affecting nearly 10% of the population worldwide. Realising an efficacious therapeutic solution for treating OA remains one of the greatest challenges in the field of orthopaedic medicine. This proposal envisions a future where 3D bioprinting systems located in hospitals will provide ‘off-the-shelf’, patient-specific biological implants to treat diseases such as OA. To realise this vision, this project will use 3D bioprinting to generate anatomically accurate, biomimetic constructs that can be used to regenerate both the cartilage and bone in a diseased joint. The first aim of this proposal is to print a mesenchymal stem cell laden biomaterial that is both immediately load bearing and can facilitate the regeneration of articular cartilage in vivo, such that the bioprinted construct will not require in vitro maturation prior to implantation. Mechanical function will be realised by integrating an interpenetrating network hydrogel into a 3D printed polymeric scaffold, while chondro-inductivity will be enhanced by the spatially-defined incorporation of cartilage extracellular matrix components and chondrogenic growth factors into the bioprinted construct. The second aim of the proposal is to use 3D bioprinting to create a cell-free, composite construct to facilitate regeneration of the bony region of a large osteochondral defect, where vascularization will be accelerated by immobilizing spatial gradients of vascular endothelial growth factor into the implant. The third aim of the proposal is to scale-up the proposed 3D bioprinted construct to enable whole joint regeneration. Finite element modelling will be used determine the optimal structural characteristics of the scaled-up implant for it to fulfil its required mechanical function. If successful, such an implant would form the basis of a truly transformative therapy for treating degenerative joint disease.
Max ERC Funding
1 999 700 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym MEMETic
Project Mechanobiologically mimetic model systems for study of Bone disease (MEMETic)
Researcher (PI) Laoise Maria CUNNINGHAM
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND GALWAY
Country Ireland
Call Details Consolidator Grant (CoG), PE8, ERC-2019-COG
Summary Despite immense efforts to develop therapies for osteoporosis, conventional drugs that target bone loss only prevent osteoporotic fractures in 50% of sufferers, and the worldwide economic burden of treatment is projected to reach $132 billion by 2050. Recently our research has (1) identified important tissue-level changes in osteoporotic bone and (2) provided evidence that the biological mechanisms by which the cells normally respond to their mechanical environment are altered. However, no existing therapeutic approach has been developed to account for these. It is timely to build upon our important research findings and significantly advance the state of the art in the field of mechanobiology to understand osteoporosis aetiology and ultimately inform effective therapies.
A particular challenge for the international research field, has been that most current understanding of bone biology and pathophysiology has been derived either using 2D cell culture, which fails to capture vital biomechanical aspects of bone that govern bone biology, or animal studies, whose biology differs from that of humans. So, existing approaches cannot fully capture, or account for both human biological and mechanical factors, and this project seeks to address this challenge.
The global objective of the MEMETic project is to provide a paradigm change for studies of bone disease and therapeutics by consolidating, and significantly advancing, our novel approaches to develop advanced ex vivo models that recreate in vivo biomechanical cues in a living and multicellular 3D environment to replicate the mechanobiological function of bone. The MEMETic models will be applied to advance understanding of osteoporosis and a new osteoporosis therapy (sclerostin antibody). A unique multidisciplinary approach, combining cell and molecular biology with biomechanical and mechanobiological techniques, will enable these important advances, and consolidate a world leading mechanobiology research program.
Summary
Despite immense efforts to develop therapies for osteoporosis, conventional drugs that target bone loss only prevent osteoporotic fractures in 50% of sufferers, and the worldwide economic burden of treatment is projected to reach $132 billion by 2050. Recently our research has (1) identified important tissue-level changes in osteoporotic bone and (2) provided evidence that the biological mechanisms by which the cells normally respond to their mechanical environment are altered. However, no existing therapeutic approach has been developed to account for these. It is timely to build upon our important research findings and significantly advance the state of the art in the field of mechanobiology to understand osteoporosis aetiology and ultimately inform effective therapies.
A particular challenge for the international research field, has been that most current understanding of bone biology and pathophysiology has been derived either using 2D cell culture, which fails to capture vital biomechanical aspects of bone that govern bone biology, or animal studies, whose biology differs from that of humans. So, existing approaches cannot fully capture, or account for both human biological and mechanical factors, and this project seeks to address this challenge.
The global objective of the MEMETic project is to provide a paradigm change for studies of bone disease and therapeutics by consolidating, and significantly advancing, our novel approaches to develop advanced ex vivo models that recreate in vivo biomechanical cues in a living and multicellular 3D environment to replicate the mechanobiological function of bone. The MEMETic models will be applied to advance understanding of osteoporosis and a new osteoporosis therapy (sclerostin antibody). A unique multidisciplinary approach, combining cell and molecular biology with biomechanical and mechanobiological techniques, will enable these important advances, and consolidate a world leading mechanobiology research program.
Max ERC Funding
1 999 956 €
Duration
Start date: 2020-09-01, End date: 2025-08-31