Project acronym 3D-FM
Project Taking Force Microscopy into the Third Dimension
Researcher (PI) Tjerk Hendrik Oosterkamp
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE3, ERC-2007-StG
Summary I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Summary
I propose to pursue two emerging Force Microscopy techniques that allow measuring structural properties below the surface of the specimen. Whereas Force Microscopy (most commonly known under the name AFM) is usually limited to measuring the surface topography and surface properties of a specimen, I will demonstrate that Force Microscopy can achieve true 3D images of the structure of the cell nucleus. In Ultrasound Force Microscopy, an ultrasound wave is launched from below towards the surface of the specimen. After the sound waves interact with structures beneath the surface of the specimen, the local variations in the amplitude and phase shift of the ultrasonic surface motion is collected by the Force Microscopy tip. Previously, measured 2D maps of the surface response have shown that the surface response is sensitive to structures below the surface. In this project I will employ miniature AFM cantilevers and nanotube tips that I have already developed in my lab. This will allow me to quickly acquire many such 2D maps at a much wider range of ultrasound frequencies and from these 2D maps calculate the full 3D structure below the surface. I expect this technique to have a resolving power better than 10 nm in three dimensions as far as 2 microns below the surface. In parallel I will introduce a major improvement to a technique based on Nuclear Magnetic Resonance (NMR). Magnetic Resonance Force Microscopy measures the interaction of a rotating nuclear spin in the field gradient of a magnetic Force Microscopy tip. However, these forces are so small that they pose an enormous challenge. Miniature cantilevers and nanotube tips, in combination with additional innovations in the detection of the cantilever motion, can overcome this problem. I expect to be able to measure the combined signal of 100 proton spins or fewer, which will allow me to measure proton densities with a resolution of 5 nm, but possibly even with atomic resolution.
Max ERC Funding
1 794 960 €
Duration
Start date: 2008-08-01, End date: 2013-07-31
Project acronym ActiveBioFluids
Project Origins of Collective Motion in Active Biofluids
Researcher (PI) Daniel TAM
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Summary
The emergence of coherent behaviour is ubiquitous in the natural world and has long captivated biologists and physicists alike. One area of growing interest is the collective motion and synchronization arising within and between simple motile organisms. My goal is to develop and use a novel experimental approach to unravel the origins of spontaneous coherent motion in three model systems of biofluids: (1) the synchronization of the two flagella of green algae Chlamydomonas Rheinhardtii, (2) the metachronal wave in the cilia of protist Paramecium and (3) the collective motion of swimming microorganisms in active suspensions. Understanding the mechanisms leading to collective motion is of tremendous importance because it is crucial to many biological processes such as mechanical signal transduction, embryonic development and biofilm formation.
Up till now, most of the work has been theoretical and has led to the dominant view that hydrodynamic interactions are the main driving force for synchronization and collective motion. Recent experiments have challenged this view and highlighted the importance of direct mechanical contact. New experimental studies are now crucially needed. The state-of-the-art of experimental approaches consists of observations of unperturbed cells. The key innovation in our approach is to dynamically interact with microorganisms in real-time, at the relevant time and length scales. I will investigate the origins of coherent motion by reproducing synthetically the mechanical signatures of physiological flows and direct mechanical interactions and track precisely the response of the organism to the perturbations. Our new approach will incorporate optical tweezers to interact with motile cells, and a unique μ-Tomographic PIV setup to track their 3D micron-scale motion.
This proposal tackles a timely question in biophysics and will yield new insight into the fundamental principles underlying collective motion in active biological matter.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ADDICTION
Project Beyond the Genetics of Addiction
Researcher (PI) Jacqueline Mignon Vink
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Summary
My proposal seeks to explain the complex interplay between genetic and environmental causes of individual variation in substance use and the risk for abuse. Substance use is common. Substances like nicotine and cannabis have well-known negative health consequences, while alcohol and caffeine use may be both beneficial and detrimental, depending on quantity and frequency of use. Twin studies (including my own) demonstrated that both heritable and environmental factors play a role.
My proposal on substance use (nicotine, alcohol, cannabis and caffeine) is organized around several key objectives: 1. To unravel the complex contribution of genetic and environmental factors to substance use by using extended twin family designs; 2. To identify and confirm genes and gene networks involved in substance use by using DNA-variant data; 3. To explore gene expression patterns with RNA data in substance users versus non-users; 4. To investigate biomarkers in substance users versus non-users using blood or urine; 5. To unravel relation between substance use and health by linking twin-family data to national medical databases.
To realize these aims I will use the extensive resources of the Netherlands Twin Register (NTR); including both the longitudinal phenotype database and the biological samples. I have been involved in data collection, coordination of data collection and analyzing NTR data since 1999. With my comprehensive experience in data collection, data analyses and my knowledge in the field of behavior genetics and addiction research I will be able to successfully lead this cutting-edge project. Additional data crucial for the project will be collected by my team. Large samples will be available for this study and state-of-the art methods will be used to analyze the data. All together, my project will offer powerful approaches to unravel the complex interaction between genetic and environmental causes of individual differences in substance use and the risk for abuse.
Max ERC Funding
1 491 964 €
Duration
Start date: 2011-12-01, End date: 2017-05-31
Project acronym AEROBIC
Project Assessing the Effects of Rising O2 on Biogeochemical Cycles: Integrated Laboratory Experiments and Numerical Simulations
Researcher (PI) Itay Halevy
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), PE10, ERC-2013-StG
Summary The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Summary
The rise of atmospheric O2 ~2,500 million years ago is one of the most profound transitions in Earth's history. Yet, despite its central role in shaping Earth's surface environment, the cause for the rise of O2 remains poorly understood. Tight coupling between the O2 cycle and the biogeochemical cycles of redox-active elements, such as C, Fe and S, implies radical changes in these cycles before, during and after the rise of O2. These changes, too, are incompletely understood, but have left valuable information encoded in the geological record. This information has been qualitatively interpreted, leaving many aspects of the rise of O2, including its causes and constraints on ocean chemistry before and after it, topics of ongoing research and debate. Here, I outline a research program to address this fundamental question in geochemical Earth systems evolution. The inherently interdisciplinary program uniquely integrates laboratory experiments, numerical models, geological observations, and geochemical analyses. Laboratory experiments and geological observations will constrain unknown parameters of the early biogeochemical cycles, and, in combination with field studies, will validate and refine the use of paleoenvironmental proxies. The insight gained will be used to develop detailed models of the coupled biogeochemical cycles, which will themselves be used to quantitatively understand the events surrounding the rise of O2, and to illuminate the dynamics of elemental cycles in the early oceans.
This program is expected to yield novel, quantitative insight into these important events in Earth history and to have a major impact on our understanding of early ocean chemistry and the rise of O2. An ERC Starting Grant will enable me to use the excellent experimental and computational facilities at my disposal, to access the outstanding human resource at the Weizmann Institute of Science, and to address one of the major open questions in modern geochemistry.
Max ERC Funding
1 472 690 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym AFFORDS-HIGHER
Project Skilled Intentionality for 'Higher' Embodied Cognition: Joining forces with a field of affordances in flux
Researcher (PI) Dirk Willem Rietveld
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Starting Grant (StG), SH4, ERC-2015-STG
Summary In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Summary
In many situations experts act adequately, yet without deliberation. Architects e.g, immediately sense opportunities offered by the site of a new project. One could label these manifestations of expert intuition as ‘higher-level’ cognition, but still these experts act unreflectively. The aim of my project is to develop the Skilled Intentionality Framework (SIF), a new conceptual framework for the field of embodied/enactive cognitive science (Chemero, 2009; Thompson, 2007). I argue that affordances - possibilities for action provided by our surroundings - are highly significant in cases of unreflective and reflective ‘higher’ cognition. Skilled Intentionality is skilled coordination with multiple affordances simultaneously.
The two central ideas behind this proposal are (a) that episodes of skilled ‘higher’ cognition can be understood as responsiveness to affordances for ‘higher’ cognition and (b) that our surroundings are highly resourceful and contribute to skillful action and cognition in a far more fundamental way than is generally acknowledged. I use embedded philosophical research in a particular practice of architecture to shed new light on the ways in which affordances for ‘higher’ cognition support creative imagination, anticipation, explicit planning and self-reflection.
The Skilled Intentionality Framework is groundbreaking in relating findings established at several complementary levels of analysis: philosophy/phenomenology, ecological psychology, affective science and neurodynamics.
Empirical findings thought to be exclusively valid for everyday unreflective action can now be used to explain skilled ‘higher’ cognition as well. Moreover, SIF brings both the context and the social back into cognitive science. I will show SIF’s relevance for Friston’s work on the anticipating brain, and apply it in the domain of architecture and public health. SIF will radically widen the scope of the increasingly influential field of embodied cognitive science.
Max ERC Funding
1 499 850 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym AlterMateria
Project Designer Quantum Materials Out of Equilibrium
Researcher (PI) Andrea Caviglia
Host Institution (HI) TECHNISCHE UNIVERSITEIT DELFT
Call Details Starting Grant (StG), PE3, ERC-2015-STG
Summary Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks for a new generation of technologies, provided that one is able to access, study and ultimately control their quantum phases in practical conditions such as at room temperature and high speeds.
On the other hand, an independent research area is emerging that uses ultra-short bursts of light to stimulate changes in the macroscopic electronic properties of solids at unprecedented speeds.
Here I propose to bridge the gap between material design and ultrafast control of solids. This new synergy will allow us to explore fundamental research questions on the non-equilibrium dynamics of quantum materials with competing ground states. Specifically, I will utilize intense THz and mid-infrared electromagnetic fields to manipulate the electronic properties of artificial quantum materials on pico- to femto-second time scales. Beyond the development of novel techniques to generate THz electric fields of unprecedented intensity, I will investigate metal-insulator and magnetic transitions in oxide heterostructures as they unfold in time. This research programme takes oxide electronics in a new direction and establishes a new methodology for the control of quantum phases at high temperature and high speed.
Summary
Recently, ‘designer’ quantum materials, synthesised layer by layer, have been realised, sparking ground-breaking new scientific insights. These artificial materials, such as oxide heterostructures, are interesting building blocks for a new generation of technologies, provided that one is able to access, study and ultimately control their quantum phases in practical conditions such as at room temperature and high speeds.
On the other hand, an independent research area is emerging that uses ultra-short bursts of light to stimulate changes in the macroscopic electronic properties of solids at unprecedented speeds.
Here I propose to bridge the gap between material design and ultrafast control of solids. This new synergy will allow us to explore fundamental research questions on the non-equilibrium dynamics of quantum materials with competing ground states. Specifically, I will utilize intense THz and mid-infrared electromagnetic fields to manipulate the electronic properties of artificial quantum materials on pico- to femto-second time scales. Beyond the development of novel techniques to generate THz electric fields of unprecedented intensity, I will investigate metal-insulator and magnetic transitions in oxide heterostructures as they unfold in time. This research programme takes oxide electronics in a new direction and establishes a new methodology for the control of quantum phases at high temperature and high speed.
Max ERC Funding
1 499 982 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym APARTHEID-STOPS
Project Apartheid -- The Global Itinerary: South African Cultural Formations in Transnational Circulation, 1948-1990
Researcher (PI) Louise Bethlehem
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Consolidator Grant (CoG), SH5, ERC-2013-CoG
Summary This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Summary
This proposal proceeds from an anomaly. Apartheid routinely breached the separation that it names. Whereas the South African regime was deeply isolationist in international terms, new research links it to the Cold War and decolonization. Yet this trend does not consider sufficiently that the global contest over the meaning of apartheid and resistance to it occurs on the terrain of culture. My project argues that studying the global circulation of South African cultural formations in the apartheid era provides novel historiographic leverage over Western liberalism during the Cold War. It recasts apartheid as an apparatus of transnational cultural production, turning existing historiography inside out. This study seeks:
• To provide the first systematic account of the deterritorialization of “apartheid”—as political signifier and as apparatus generating circuits of transnational cultural production.
• To analyze these itinerant cultural formations across media and national borders, articulating new intersections.
• To map the itineraries of major South African exiles, where exile is taken to be a system of interlinked circuits of affiliation and cultural production.
• To revise the historiography of states other than South Africa through the lens of deterritorialized apartheid-era formations at their respective destinations.
• To show how apartheid reveals contradictions within Western liberalism during the Cold War, with special reference to racial inequality.
Methodologically, I introduce the model of thick convergence to analyze three periods:
1. Kliptown & Bandung: Novel possibilities, 1948-1960.
2. Sharpeville & Memphis: Drumming up resistance, 1960-1976.
3. From Soweto to Berlin: Spectacle at the barricades, 1976-1990.
Each explores a cultural dominant in the form of texts, soundscapes or photographs. My work stands at the frontier of transnational research, furnishing powerful new insights into why South Africa matters on the stage of global history.
Max ERC Funding
1 861 238 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ARTECHNE
Project Technique in the Arts. Concepts, Practices, Expertise (1500-1950)
Researcher (PI) Sven Georges Mathieu Dupré
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary The transmission of ‘technique’ in art has been a conspicuous ‘black box’ resisting analysis. The tools of the humanities used to study the transmission of ideas and concepts are insufficient when it comes to understanding the transmission of something as non-propositional and non-verbal as ‘technique’. The insights of the neurosciences in, for example, the acquisition and transmission of drawing skills are not yet sufficiently advanced to be historically restrictive. However, only in the most recent years, the history of science and technology has turned to how-to instructions as given in recipes. This project proposes to undertake the experimental reconstruction of historical recipes to finally open the black box of the transmission of technique in the visual and decorative arts. Considering ‘technique’ as a textual, material and social practice, this project will write a long-term history of the theory and practice of the study of ‘technique’ in the visual and decorative arts between 1500 and 1950. The three central research questions here are: (1) what is technique in the visual and decorative arts, (2) how is technique transmitted and studied, and (3) who is considered expert in technique, and why? This project will make a breakthrough in our understanding of the transmission of technique in the arts by integrating methodologies typical for the humanities and historical disciplines with laboratory work. Also, by providing a history of technique in the arts, this project lays the historical foundations of the epistemologies of conservation, restoration and technical art history precisely at a moment of greatest urgency. The connection between the history of science and technology and the expertise in conservation, restoration and technical art history (in the Ateliergebouw in Amsterdam) this project envisions builds the intellectual infrastructure of a new field of interdisciplinary research, unique in Europe.
Summary
The transmission of ‘technique’ in art has been a conspicuous ‘black box’ resisting analysis. The tools of the humanities used to study the transmission of ideas and concepts are insufficient when it comes to understanding the transmission of something as non-propositional and non-verbal as ‘technique’. The insights of the neurosciences in, for example, the acquisition and transmission of drawing skills are not yet sufficiently advanced to be historically restrictive. However, only in the most recent years, the history of science and technology has turned to how-to instructions as given in recipes. This project proposes to undertake the experimental reconstruction of historical recipes to finally open the black box of the transmission of technique in the visual and decorative arts. Considering ‘technique’ as a textual, material and social practice, this project will write a long-term history of the theory and practice of the study of ‘technique’ in the visual and decorative arts between 1500 and 1950. The three central research questions here are: (1) what is technique in the visual and decorative arts, (2) how is technique transmitted and studied, and (3) who is considered expert in technique, and why? This project will make a breakthrough in our understanding of the transmission of technique in the arts by integrating methodologies typical for the humanities and historical disciplines with laboratory work. Also, by providing a history of technique in the arts, this project lays the historical foundations of the epistemologies of conservation, restoration and technical art history precisely at a moment of greatest urgency. The connection between the history of science and technology and the expertise in conservation, restoration and technical art history (in the Ateliergebouw in Amsterdam) this project envisions builds the intellectual infrastructure of a new field of interdisciplinary research, unique in Europe.
Max ERC Funding
1 907 944 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ASICA
Project New constraints on the Amazonian carbon balance from airborne observations of the stable isotopes of CO2
Researcher (PI) Wouter Peters
Host Institution (HI) WAGENINGEN UNIVERSITY
Call Details Consolidator Grant (CoG), PE10, ERC-2014-CoG
Summary Severe droughts in Amazonia in 2005 and 2010 caused widespread loss of carbon from the terrestrial biosphere. This loss, almost twice the annual fossil fuel CO2 emissions in the EU, suggests a large sensitivity of the Amazonian carbon balance to a predicted more intense drought regime in the next decades. This is a dangerous inference though, as there is no scientific consensus on the most basic metrics of Amazonian carbon exchange: the gross primary production (GPP) and its response to moisture deficits in the soil and atmosphere. Measuring them on scales that span the whole Amazon forest was thus far impossible, but in this project I aim to deliver the first observation-based estimate of pan-Amazonian GPP and its drought induced variations.
My program builds on two recent breakthroughs in our use of stable isotopes (13C, 17O, 18O) in atmospheric CO2: (1) Our discovery that observed δ¹³C in CO2 in the atmosphere is a quantitative measure for vegetation water-use efficiency over millions of square kilometers, integrating the drought response of individual plants. (2) The possibility to precisely measure the relative ratios of 18O/16O and 17O/16O in CO2, called Δ17O. Anomalous Δ17O values are present in air coming down from the stratosphere, but this anomaly is removed upon contact of CO2 with leaf water inside plant stomata. Hence, observed Δ17O values depend directly on the magnitude of GPP. Both δ¹³C and Δ17O measurements are scarce over the Amazon-basin, and I propose more than 7000 new measurements leveraging an established aircraft monitoring program in Brazil. Quantitative interpretation of these observations will break new ground in our use of stable isotopes to understand climate variations, and is facilitated by our renowned numerical modeling system “CarbonTracker”. My program will answer two burning question in carbon cycle science today: (a) What is the magnitude of GPP in Amazonia? And (b) How does it vary over different intensities of drought?
Summary
Severe droughts in Amazonia in 2005 and 2010 caused widespread loss of carbon from the terrestrial biosphere. This loss, almost twice the annual fossil fuel CO2 emissions in the EU, suggests a large sensitivity of the Amazonian carbon balance to a predicted more intense drought regime in the next decades. This is a dangerous inference though, as there is no scientific consensus on the most basic metrics of Amazonian carbon exchange: the gross primary production (GPP) and its response to moisture deficits in the soil and atmosphere. Measuring them on scales that span the whole Amazon forest was thus far impossible, but in this project I aim to deliver the first observation-based estimate of pan-Amazonian GPP and its drought induced variations.
My program builds on two recent breakthroughs in our use of stable isotopes (13C, 17O, 18O) in atmospheric CO2: (1) Our discovery that observed δ¹³C in CO2 in the atmosphere is a quantitative measure for vegetation water-use efficiency over millions of square kilometers, integrating the drought response of individual plants. (2) The possibility to precisely measure the relative ratios of 18O/16O and 17O/16O in CO2, called Δ17O. Anomalous Δ17O values are present in air coming down from the stratosphere, but this anomaly is removed upon contact of CO2 with leaf water inside plant stomata. Hence, observed Δ17O values depend directly on the magnitude of GPP. Both δ¹³C and Δ17O measurements are scarce over the Amazon-basin, and I propose more than 7000 new measurements leveraging an established aircraft monitoring program in Brazil. Quantitative interpretation of these observations will break new ground in our use of stable isotopes to understand climate variations, and is facilitated by our renowned numerical modeling system “CarbonTracker”. My program will answer two burning question in carbon cycle science today: (a) What is the magnitude of GPP in Amazonia? And (b) How does it vary over different intensities of drought?
Max ERC Funding
2 269 689 €
Duration
Start date: 2015-09-01, End date: 2020-08-31