Project acronym CC-TOP
Project Cryosphere-Carbon on Top of the Earth (CC-Top):Decreasing Uncertainties of Thawing Permafrost and Collapsing Methane Hydrates in the Arctic
Researcher (PI) Örjan GUSTAFSSON
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The enormous quantities of frozen carbon in the Arctic, held in shallow soils and sediments, act as “capacitors” of the global carbon system. Thawing permafrost (PF) and collapsing methane hydrates are top candidates to cause a net transfer of carbon from land/ocean to the atmosphere this century, yet uncertainties abound.
Our program targets the East Siberian Arctic Ocean (ESAO), the World’s largest shelf sea, as it holds 80% of coastal PF, 80% of subsea PF and 75% of shallow hydrates. Our initial findings (e.g., Science, 2010; Nature, 2012; PNAS; 2013; Nature Geoscience, 2013, 2014) are challenging earlier notions by showing complexities in terrestrial PF-Carbon remobilization and extensive venting of methane from subsea PF/hydrates. The objective of the CC-Top Program is to transform descriptive and data-lean pictures into quantitative understanding of the CC system, to pin down the present and predict future releases from these “Sleeping Giants” of the global carbon system.
The CC-Top program combines unique Arctic field capacities with powerful molecular-isotopic characterization of PF-carbon/methane to break through on:
The “awakening” of terrestrial PF-C pools: CC-Top will employ great pan-arctic rivers as natural integrators and by probing the δ13C/Δ14C and molecular fingerprints, apportion release fluxes of different PF-C pools.
The ESAO subsea cryosphere/methane: CC-Top will use recent spatially-extensive observations, deep sediment cores and gap-filling expeditions to (i) estimate distribution of subsea PF and hydrates; (ii) establish thermal state (thawing rate) of subsea PF-C; (iii) apportion sources of releasing methane btw subsea-PF, shallow hydrates vs seepage from the deep petroleum megapool using source-diagnostic triple-isotope fingerprinting.
Arctic Ocean slope hydrates: CC-Top will investigate sites (discovered by us 2008-2014) of collapsed hydrates venting methane, to characterize geospatial distribution and causes of destabilization.
Summary
The enormous quantities of frozen carbon in the Arctic, held in shallow soils and sediments, act as “capacitors” of the global carbon system. Thawing permafrost (PF) and collapsing methane hydrates are top candidates to cause a net transfer of carbon from land/ocean to the atmosphere this century, yet uncertainties abound.
Our program targets the East Siberian Arctic Ocean (ESAO), the World’s largest shelf sea, as it holds 80% of coastal PF, 80% of subsea PF and 75% of shallow hydrates. Our initial findings (e.g., Science, 2010; Nature, 2012; PNAS; 2013; Nature Geoscience, 2013, 2014) are challenging earlier notions by showing complexities in terrestrial PF-Carbon remobilization and extensive venting of methane from subsea PF/hydrates. The objective of the CC-Top Program is to transform descriptive and data-lean pictures into quantitative understanding of the CC system, to pin down the present and predict future releases from these “Sleeping Giants” of the global carbon system.
The CC-Top program combines unique Arctic field capacities with powerful molecular-isotopic characterization of PF-carbon/methane to break through on:
The “awakening” of terrestrial PF-C pools: CC-Top will employ great pan-arctic rivers as natural integrators and by probing the δ13C/Δ14C and molecular fingerprints, apportion release fluxes of different PF-C pools.
The ESAO subsea cryosphere/methane: CC-Top will use recent spatially-extensive observations, deep sediment cores and gap-filling expeditions to (i) estimate distribution of subsea PF and hydrates; (ii) establish thermal state (thawing rate) of subsea PF-C; (iii) apportion sources of releasing methane btw subsea-PF, shallow hydrates vs seepage from the deep petroleum megapool using source-diagnostic triple-isotope fingerprinting.
Arctic Ocean slope hydrates: CC-Top will investigate sites (discovered by us 2008-2014) of collapsed hydrates venting methane, to characterize geospatial distribution and causes of destabilization.
Max ERC Funding
2 499 756 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym DIALOY
Project Mosaic loss of chromosome Y (LOY) in blood cells - a new biomarker for risk of cancer and Alzheimer’s disease in men
Researcher (PI) Lars Anders Forsberg
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Summary
My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Max ERC Funding
1 525 000 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym ECOHERB
Project Drivers and impacts of invertebrate herbivores across forest ecosystems globally.
Researcher (PI) Daniel Metcalfe
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary Forests slow global climate change by absorbing atmospheric carbon dioxide but this ecosystem service is limited by soil nutrients. Herbivores potentially alter soil nutrients in a range of ways, but these have mostly only been recorded for large mammals. By comparison, the impacts of the abundant invertebrates in forests have largely been ignored and are not included in current models used to generate the climate predictions so vital for designing governmental policies
The proposed project will use a pioneering new interdisciplinary approach to provide the most complete picture yet available of the rates, underlying drivers and ultimate impacts of key nutrient inputs from invertebrate herbivores across forest ecosystems worldwide. Specifically, we will:
(1) Establish a network of herbivory monitoring stations across all major forest types, and across key environmental gradients (temperature, rainfall, ecosystem development).
(2) Perform laboratory experiments to examine the effects of herbivore excreta on soil processes under different temperature and moisture conditions.
(3) Integrate this information into a cutting-edge ecosystem model, to generate more accurate predictions of forest carbon sequestration under future climate change.
The network established will form the foundation for a unique long-term global monitoring effort which we intend to continue long after the current funding time scale. This work represents a powerful blend of several disciplines harnessing an array of cutting edge tools to provide fundamentally novel insights into an area of direct and urgent importance for the society.
Summary
Forests slow global climate change by absorbing atmospheric carbon dioxide but this ecosystem service is limited by soil nutrients. Herbivores potentially alter soil nutrients in a range of ways, but these have mostly only been recorded for large mammals. By comparison, the impacts of the abundant invertebrates in forests have largely been ignored and are not included in current models used to generate the climate predictions so vital for designing governmental policies
The proposed project will use a pioneering new interdisciplinary approach to provide the most complete picture yet available of the rates, underlying drivers and ultimate impacts of key nutrient inputs from invertebrate herbivores across forest ecosystems worldwide. Specifically, we will:
(1) Establish a network of herbivory monitoring stations across all major forest types, and across key environmental gradients (temperature, rainfall, ecosystem development).
(2) Perform laboratory experiments to examine the effects of herbivore excreta on soil processes under different temperature and moisture conditions.
(3) Integrate this information into a cutting-edge ecosystem model, to generate more accurate predictions of forest carbon sequestration under future climate change.
The network established will form the foundation for a unique long-term global monitoring effort which we intend to continue long after the current funding time scale. This work represents a powerful blend of several disciplines harnessing an array of cutting edge tools to provide fundamentally novel insights into an area of direct and urgent importance for the society.
Max ERC Funding
1 750 000 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym EPIScOPE
Project Reversing the epigenetic state of oligodendrocyte precursors cells in multiple sclerosis
Researcher (PI) Gonçalo DE SÁ E SOUSA DE CASTELO BRANCO
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Oligodendrocytes (OL) are glial cells that mediate myelination of neurons, a process that is defective in multiple sclerosis (MS). Although OL precursor cells (OPCs) can initially promote remyelination in MS, this regenerative mechanism eventually fails in progressive MS. OPCs go through several epigenetic states that ultimately define their potential to differentiate and myelinate. OPCs in progressive MS stall in a distinct epigenetic state, incompatible with differentiation and remyelination. We hypothesize that these OPCs regress to an epigenetic state reminiscent of the state of embryonic OPCs, which remain undifferentiated.
In this proposal, we aim to uncover the causes behind the remyelination failure upon disease progression in MS. We will determine the epigenetic/transcriptional states of OPCs during development and in MS, using single cell and bulk RNA sequencing and quantitative proteomics. We will further investigate how the interplay between transcription factors (TFs), chromatin modifiers (ChMs) and non-coding RNAs (ncRNAs) contributes to the transition between epigenetic states of OPCs. The results will allow the identification of ChMs and ncRNAs that can modulate these states and thereby control OPC differentiation and myelination. We will use this knowledge to investigate whether we can reverse the epigenetic state of OPCs in MS, in order to promote their differentiation and remyelination. The unique combination of leading-edge techniques such as SILAC coupled with immunoprecipitation and mass-spectrometry, single-cell RNA sequencing, ChIP-Sequencing, among others, will allow us to provide insights into novel epigenetic mechanisms that might be underlying the effects of environmental and lifestyle risk factors for MS. Moreover, this project has the potential to lead to the discovery of new targets for epigenetic-based therapies for MS, which could provide major opportunities for improved clinical outcome of MS patients in the near future.
Summary
Oligodendrocytes (OL) are glial cells that mediate myelination of neurons, a process that is defective in multiple sclerosis (MS). Although OL precursor cells (OPCs) can initially promote remyelination in MS, this regenerative mechanism eventually fails in progressive MS. OPCs go through several epigenetic states that ultimately define their potential to differentiate and myelinate. OPCs in progressive MS stall in a distinct epigenetic state, incompatible with differentiation and remyelination. We hypothesize that these OPCs regress to an epigenetic state reminiscent of the state of embryonic OPCs, which remain undifferentiated.
In this proposal, we aim to uncover the causes behind the remyelination failure upon disease progression in MS. We will determine the epigenetic/transcriptional states of OPCs during development and in MS, using single cell and bulk RNA sequencing and quantitative proteomics. We will further investigate how the interplay between transcription factors (TFs), chromatin modifiers (ChMs) and non-coding RNAs (ncRNAs) contributes to the transition between epigenetic states of OPCs. The results will allow the identification of ChMs and ncRNAs that can modulate these states and thereby control OPC differentiation and myelination. We will use this knowledge to investigate whether we can reverse the epigenetic state of OPCs in MS, in order to promote their differentiation and remyelination. The unique combination of leading-edge techniques such as SILAC coupled with immunoprecipitation and mass-spectrometry, single-cell RNA sequencing, ChIP-Sequencing, among others, will allow us to provide insights into novel epigenetic mechanisms that might be underlying the effects of environmental and lifestyle risk factors for MS. Moreover, this project has the potential to lead to the discovery of new targets for epigenetic-based therapies for MS, which could provide major opportunities for improved clinical outcome of MS patients in the near future.
Max ERC Funding
1 895 155 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym inHForm
Project Integrative omics of heart failure to inform discovery of novel drug targets and clinical biomarkers
Researcher (PI) J. Gustav Smith
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary Heart failure is a leading cause of morbidity and mortality in the aging European populations. It is the end-stage of myocardial and valvular disease, arising from loss of viable or functional muscle cells in the heart. Therapy is complicated by the multitude of causes and comorbidities of heart failure. New therapeutic targets and clinical biomarkers to individually tailor therapy (‘precision medicine’) are greatly needed. This research program aims to realize the promise of precision medicine by applying an integrated proteomic, genomic and epidemiological approach to the underlying causes, mechanisms and consequences for heart failure. The program builds on unique Swedish nation-wide disease registers and large biobanks, the translational research profile of the investigator and experience in genomics, epidemiology and proteomics. The program includes five work packages: (1) comprehensive plasma protein profiling through a discovery pipeline including novel microarray-based methods and mass spectrometry in a population-based cohort of 6000 subjects and clinical cases to identify subjects at risk for heart disease (2) assessment of heritable components to outcomes in heart disease using nation-wide Swedish registers (3) genome-wide discovery of variants associated with risk of and outcomes in heart disease as well as endophenotypes for cardiac structure and function, using resequencing and DNA microarrays in large population-based cohorts including >70,000 subjects from three generations (4) expression profiling in human heart samples and a novel human cardiomyocyte strain assay to translate genomic and proteomic findings to understanding of pathophysiological mechanisms (5) evaluate the clinical importance of plasma proteins and genetic variants in >3000 clinical cases. This research program is anticipated to result in new insights into the pathophysiology of heart failure and discovery of drug targets and clinical biomarkers.
Summary
Heart failure is a leading cause of morbidity and mortality in the aging European populations. It is the end-stage of myocardial and valvular disease, arising from loss of viable or functional muscle cells in the heart. Therapy is complicated by the multitude of causes and comorbidities of heart failure. New therapeutic targets and clinical biomarkers to individually tailor therapy (‘precision medicine’) are greatly needed. This research program aims to realize the promise of precision medicine by applying an integrated proteomic, genomic and epidemiological approach to the underlying causes, mechanisms and consequences for heart failure. The program builds on unique Swedish nation-wide disease registers and large biobanks, the translational research profile of the investigator and experience in genomics, epidemiology and proteomics. The program includes five work packages: (1) comprehensive plasma protein profiling through a discovery pipeline including novel microarray-based methods and mass spectrometry in a population-based cohort of 6000 subjects and clinical cases to identify subjects at risk for heart disease (2) assessment of heritable components to outcomes in heart disease using nation-wide Swedish registers (3) genome-wide discovery of variants associated with risk of and outcomes in heart disease as well as endophenotypes for cardiac structure and function, using resequencing and DNA microarrays in large population-based cohorts including >70,000 subjects from three generations (4) expression profiling in human heart samples and a novel human cardiomyocyte strain assay to translate genomic and proteomic findings to understanding of pathophysiological mechanisms (5) evaluate the clinical importance of plasma proteins and genetic variants in >3000 clinical cases. This research program is anticipated to result in new insights into the pathophysiology of heart failure and discovery of drug targets and clinical biomarkers.
Max ERC Funding
1 496 625 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym NASCENT
Project Novel Approach to Systematically Characterize Exercise- and Nutrient- responsive genes in Type 2 diabetes and cardiovascular disease
Researcher (PI) Paul William Selberg-Franks
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Proposal summary
Type 2 diabetes and cardiovascular disease are devastating and costly morbidities whose prevalences are increasing rapidly around the world. As such, there is an urgent need to develop innovative and effective prevention and treatment strategies. As numerous clinical trials have shown, lifestyle modification is by far the best way to prevent these diseases, with lifestyle being twice as effective as the best drugs, less costly and free from side effects. Yet, human biology is complex, causing some people to respond well and others poorly to the same lifestyle interventions. Thus, a huge, as yet unrealised opportunity exists to optimize the prevention and treatment of cardiometabolic diseases by tailoring lifestyle interventions to the patient’s unique biology.
NASCENT is an integrated programme of research through which I will functionally annotate and later translate discoveries of gene-lifestyle interactions made through the interrogation of large epidemiological (N>100,000) datasets at my disposal. The functional annotation of these discoveries will be done using state-of-the-art epigenomic and targeted gene editing tools, whereas the translation of those findings will be achieved using a innovative and powerful clinical trial design that focuses on treatments that are tailored to the participant’s genotype (genotype-based recall).
NASCENT capitalizes on a solid foundation of cohorts, methods, and expertise that I have built-up over the past fifteen years, but also exploits state-of-the-art epigenomic and gene-editing technologies that have not previously been used in studies of gene-lifestyle interactions. I expect the integration of these established and new approaches in NASCENT to propel major advances in understanding gene-lifestyle interactions in cardiometabolic disease that help optimise disease prevention.
Summary
Proposal summary
Type 2 diabetes and cardiovascular disease are devastating and costly morbidities whose prevalences are increasing rapidly around the world. As such, there is an urgent need to develop innovative and effective prevention and treatment strategies. As numerous clinical trials have shown, lifestyle modification is by far the best way to prevent these diseases, with lifestyle being twice as effective as the best drugs, less costly and free from side effects. Yet, human biology is complex, causing some people to respond well and others poorly to the same lifestyle interventions. Thus, a huge, as yet unrealised opportunity exists to optimize the prevention and treatment of cardiometabolic diseases by tailoring lifestyle interventions to the patient’s unique biology.
NASCENT is an integrated programme of research through which I will functionally annotate and later translate discoveries of gene-lifestyle interactions made through the interrogation of large epidemiological (N>100,000) datasets at my disposal. The functional annotation of these discoveries will be done using state-of-the-art epigenomic and targeted gene editing tools, whereas the translation of those findings will be achieved using a innovative and powerful clinical trial design that focuses on treatments that are tailored to the participant’s genotype (genotype-based recall).
NASCENT capitalizes on a solid foundation of cohorts, methods, and expertise that I have built-up over the past fifteen years, but also exploits state-of-the-art epigenomic and gene-editing technologies that have not previously been used in studies of gene-lifestyle interactions. I expect the integration of these established and new approaches in NASCENT to propel major advances in understanding gene-lifestyle interactions in cardiometabolic disease that help optimise disease prevention.
Max ERC Funding
1 875 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym NORVAS
Project Therapeutic and Biomarker Potential of long non-coding RNAs in Vascular Disease
Researcher (PI) Lars Maegdefessel
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary The contribution of cardiovascular disease to human morbidity and mortality continues to steadily increase in our aging European society. In response, extraordinary efforts have been launched to determine the molecular and pathophysiological characteristics of its etiology. The collective work of multiple research groups has uncovered a complex transcriptional and post-transcriptional regulatory milieu, which is believed to be essential for maintaining cardiovascular homeostasis. Recently, non-coding RNAs, especially the ones with antisense capabilities such as microRNAs or ‘natural antisense transcripts’ (NATs) have received much attention. They have been identified as important transcriptional and post-transcriptional inhibitors of gene expression.
This current proposal describes the development of novel diagnostic and therapeutic strategies to limit the burden of cardiovascular disease in general, and abdominal aortic aneurysms as well as carotid stenosis and subsequent stroke in particular. Using transcriptomic profiling techniques on human diseased tissue samples, we have identified two NATs (SLFNL-AS1 and NUDT6) as novel crucial regulators of smooth muscle cell survival via targeting CTPS1 and the fibroblast growth factor 2 (FGF2) in the vascular system. We are using disease-relevant experimental in vivo models (rodents and LDLR-/- mini-pigs) to functionally assess how inhibition of these two NATs influences aneurysm progression and atherosclerotic plaque vulnerability. One focus of our studies is to utilize local delivery mechanisms for non-coding RNA modulators, such as drug eluting balloons and stents, to enhance the translational feasibility of our findings. Furthermore, we have access to unique human plasma material from patients with early and advanced forms of aneurysm disease, enabling us to investigate the biomarker value of non-coding RNAs in recognizing patients with acutely ruptured aneurysms, as well as predicting the future risk of rupture.
Summary
The contribution of cardiovascular disease to human morbidity and mortality continues to steadily increase in our aging European society. In response, extraordinary efforts have been launched to determine the molecular and pathophysiological characteristics of its etiology. The collective work of multiple research groups has uncovered a complex transcriptional and post-transcriptional regulatory milieu, which is believed to be essential for maintaining cardiovascular homeostasis. Recently, non-coding RNAs, especially the ones with antisense capabilities such as microRNAs or ‘natural antisense transcripts’ (NATs) have received much attention. They have been identified as important transcriptional and post-transcriptional inhibitors of gene expression.
This current proposal describes the development of novel diagnostic and therapeutic strategies to limit the burden of cardiovascular disease in general, and abdominal aortic aneurysms as well as carotid stenosis and subsequent stroke in particular. Using transcriptomic profiling techniques on human diseased tissue samples, we have identified two NATs (SLFNL-AS1 and NUDT6) as novel crucial regulators of smooth muscle cell survival via targeting CTPS1 and the fibroblast growth factor 2 (FGF2) in the vascular system. We are using disease-relevant experimental in vivo models (rodents and LDLR-/- mini-pigs) to functionally assess how inhibition of these two NATs influences aneurysm progression and atherosclerotic plaque vulnerability. One focus of our studies is to utilize local delivery mechanisms for non-coding RNA modulators, such as drug eluting balloons and stents, to enhance the translational feasibility of our findings. Furthermore, we have access to unique human plasma material from patients with early and advanced forms of aneurysm disease, enabling us to investigate the biomarker value of non-coding RNAs in recognizing patients with acutely ruptured aneurysms, as well as predicting the future risk of rupture.
Max ERC Funding
1 493 125 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym PATHAD
Project Pathways to Alzheimer's disease
Researcher (PI) Henrik Zetterberg
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Critical to our understanding of Alzheimer’s disease (AD) and also to finding therapies is determining how key pathological factors interact and relate to neuronal toxicity, symptoms and disease progression. My research has focussed on amyloid beta (Aβ) moities and demonstrated that cerebrospinal fluid (CSF) Aβ42 correlates with cerebral Aβ pathology; that Aβ accumulates in the brain 10-20 years prior to onset of symptoms; and that CSF Aβ abnormalities precede CSF tau changes. However, it is increasingly clear that a simple linear model of AD aetiology and progression is inadequate. This proposal aims at developing and validating new diagnostic and prognostic biomarker tools to examine the AD pathogenesis in humans taking a broad view of AD’s multiple pathophysiological features and their putative biomarkers. The major questions, all relevant to therapeutic research, that will be addressed in my proposal include: (i) how are different forms of Aβ produced and modified; (ii) what is the toxicity of these different forms; (iii) how is this toxicity mediated; and iv) what other pathologies may contribute to or modify AD-like phenotypes? We and others have shown that Aβ monomers are relatively non-toxic. We will address the hypothesis that Aβ starts to accumulate in the brains of certain individuals due to defective clearance of the peptide. Once aggregated, Aβ acquires chemical modifications during brain incubation over years. These modified Aβ forms then induce tau hyperphosphorylation and concomitantly over-activate the immune system, resulting in neurotoxicity. Other pathologies, including α-synuclein and TDP-43, may contribute in this process. In PATHAD, we will develop and validate new diagnostic and prognostic tools using a combination of groundbreaking technologies and unique clinical materials to dissect the underlying molecular pathogenesis of AD in much greater detail than what has been possible before and facilitate the development of effective treatments.
Summary
Critical to our understanding of Alzheimer’s disease (AD) and also to finding therapies is determining how key pathological factors interact and relate to neuronal toxicity, symptoms and disease progression. My research has focussed on amyloid beta (Aβ) moities and demonstrated that cerebrospinal fluid (CSF) Aβ42 correlates with cerebral Aβ pathology; that Aβ accumulates in the brain 10-20 years prior to onset of symptoms; and that CSF Aβ abnormalities precede CSF tau changes. However, it is increasingly clear that a simple linear model of AD aetiology and progression is inadequate. This proposal aims at developing and validating new diagnostic and prognostic biomarker tools to examine the AD pathogenesis in humans taking a broad view of AD’s multiple pathophysiological features and their putative biomarkers. The major questions, all relevant to therapeutic research, that will be addressed in my proposal include: (i) how are different forms of Aβ produced and modified; (ii) what is the toxicity of these different forms; (iii) how is this toxicity mediated; and iv) what other pathologies may contribute to or modify AD-like phenotypes? We and others have shown that Aβ monomers are relatively non-toxic. We will address the hypothesis that Aβ starts to accumulate in the brains of certain individuals due to defective clearance of the peptide. Once aggregated, Aβ acquires chemical modifications during brain incubation over years. These modified Aβ forms then induce tau hyperphosphorylation and concomitantly over-activate the immune system, resulting in neurotoxicity. Other pathologies, including α-synuclein and TDP-43, may contribute in this process. In PATHAD, we will develop and validate new diagnostic and prognostic tools using a combination of groundbreaking technologies and unique clinical materials to dissect the underlying molecular pathogenesis of AD in much greater detail than what has been possible before and facilitate the development of effective treatments.
Max ERC Funding
1 985 093 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym PreventStoCan
Project Understanding microbe-induced stomach cancer – the key to a workable strategy for worldwide prevention
Researcher (PI) Weimin Ye
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2015-CoG
Summary Stomach cancer is the 4th most common cancer and 2nd leading cause of cancer-related death worldwide. The aim of this proposal is to deepen the understanding of mechanisms involved in microbe-induced gastric carcinogenesis, which will facilitate risk stratification for identification of high-risk groups and may offer new opportunities for pharmacological and probiotic prevention. We hypothesize that novel H. pylori genotypic variation can predict carcinogenicity. The cancer-causing H. pylori strains may no longer be present at the time of cancer diagnosis, displaced by a changed microenvironment and invading microorganisms. We further hypothesize that the composition of invading microorganisms determines the risk of stomach cancer. To test these hypotheses, we will perform a case-control study nested within a historic cohort of patients with gastric biopsies taken decades ago. For cases who developed stomach cancer several years after index biopsy and their matched controls, paraffin-embedded blocks will be retrieved for metagenomic analysis of H. pylori and other microfloras, using our new method with laser capture micro-dissection, DNA amplification and sequencing. Interactions of host response and environmental exposures with the gastric microbiome will also be checked. To explore the molecular mechanism underlying the gastric carcinogenesis, we will further examine gastric epigenetic changes and mutation profiles by novel methods which require minute amount of starting material. Moreover, we will develop non-invasive tests for infections with carcinogenic strains of H. pylori and other microorganisms, which can easily be deployed in low-resource countries. This project will not only contribute significantly to reducing the worldwide burden of this dreaded malignancy, but also broaden our understanding of the mechanisms linking infection, inflammation and cancer development, and open a door for research using the vast resources of archived pathology materials.
Summary
Stomach cancer is the 4th most common cancer and 2nd leading cause of cancer-related death worldwide. The aim of this proposal is to deepen the understanding of mechanisms involved in microbe-induced gastric carcinogenesis, which will facilitate risk stratification for identification of high-risk groups and may offer new opportunities for pharmacological and probiotic prevention. We hypothesize that novel H. pylori genotypic variation can predict carcinogenicity. The cancer-causing H. pylori strains may no longer be present at the time of cancer diagnosis, displaced by a changed microenvironment and invading microorganisms. We further hypothesize that the composition of invading microorganisms determines the risk of stomach cancer. To test these hypotheses, we will perform a case-control study nested within a historic cohort of patients with gastric biopsies taken decades ago. For cases who developed stomach cancer several years after index biopsy and their matched controls, paraffin-embedded blocks will be retrieved for metagenomic analysis of H. pylori and other microfloras, using our new method with laser capture micro-dissection, DNA amplification and sequencing. Interactions of host response and environmental exposures with the gastric microbiome will also be checked. To explore the molecular mechanism underlying the gastric carcinogenesis, we will further examine gastric epigenetic changes and mutation profiles by novel methods which require minute amount of starting material. Moreover, we will develop non-invasive tests for infections with carcinogenic strains of H. pylori and other microorganisms, which can easily be deployed in low-resource countries. This project will not only contribute significantly to reducing the worldwide burden of this dreaded malignancy, but also broaden our understanding of the mechanisms linking infection, inflammation and cancer development, and open a door for research using the vast resources of archived pathology materials.
Max ERC Funding
1 941 531 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym TAROX
Project Targeting oxidative repair proteins for treatment of cancer and inflammation
Researcher (PI) Ulf Thomas Edvard HELLEDAY
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary Oxidative damage and defects in DNA repair are frequently underlying many diseases, e.g., cancer, autoimmune diseases, ischemia/reperfusion injury, neurodegenerative disorders, viral diseases and ageing. Although some molecular understanding into oxidative DNA lesions and repair proteins exist, a thorough understanding on the link to diseases is largely missing, and therapies exploiting oxidative DNA damage and repair have not emerged. Here, we will study mechanisms of nucleotide metabolism and oxidative DNA damage and repair, and generate tools and make use of ‘omics’ approaches to explore the function of the Nudix and glycosylases family enzymes in relation to oxidative metabolism. Furthermore, we will progress and understand the basic mechanisms how oxidative DNA lesions are processed and kill cells. Importantly, we will develop small molecule inhibitors targeting Nudix and glycosylases, e.g. MTH1, NUDT15 and OGG1, and use our newly developed inhibitors to increase our knowledge of these enzymes in oxidative metabolism and disease. We will further optimize these inhibitors into drugs and explore therapeutic approaches in cancer and inflammation as well as in exploratory studies in a variety of diseases involving oxidative stress. Altogether, in this programme we contribute to deepen our knowledge into the fundamental biology of oxidative stress and its links with disease, and providing the scientific community with an innovative repertoire of selective inhibitors for numerous enzymes involved in repair of oxidative lesions. This will enable exploratory basic science discoveries as well as potential novel therapeutic interventions ‘outside the box’. The programme will also generate high value to the industrial competitiveness of Europe in form of novel inhibitors for treatment of diseases.
Summary
Oxidative damage and defects in DNA repair are frequently underlying many diseases, e.g., cancer, autoimmune diseases, ischemia/reperfusion injury, neurodegenerative disorders, viral diseases and ageing. Although some molecular understanding into oxidative DNA lesions and repair proteins exist, a thorough understanding on the link to diseases is largely missing, and therapies exploiting oxidative DNA damage and repair have not emerged. Here, we will study mechanisms of nucleotide metabolism and oxidative DNA damage and repair, and generate tools and make use of ‘omics’ approaches to explore the function of the Nudix and glycosylases family enzymes in relation to oxidative metabolism. Furthermore, we will progress and understand the basic mechanisms how oxidative DNA lesions are processed and kill cells. Importantly, we will develop small molecule inhibitors targeting Nudix and glycosylases, e.g. MTH1, NUDT15 and OGG1, and use our newly developed inhibitors to increase our knowledge of these enzymes in oxidative metabolism and disease. We will further optimize these inhibitors into drugs and explore therapeutic approaches in cancer and inflammation as well as in exploratory studies in a variety of diseases involving oxidative stress. Altogether, in this programme we contribute to deepen our knowledge into the fundamental biology of oxidative stress and its links with disease, and providing the scientific community with an innovative repertoire of selective inhibitors for numerous enzymes involved in repair of oxidative lesions. This will enable exploratory basic science discoveries as well as potential novel therapeutic interventions ‘outside the box’. The programme will also generate high value to the industrial competitiveness of Europe in form of novel inhibitors for treatment of diseases.
Max ERC Funding
2 279 406 €
Duration
Start date: 2016-08-01, End date: 2021-07-31