Project acronym 5D Heart Patch
Project A Functional, Mature In vivo Human Ventricular Muscle Patch for Cardiomyopathy
Researcher (PI) Kenneth Randall Chien
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2016-ADG
Summary Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Summary
Developing new therapeutic strategies for heart regeneration is a major goal for cardiac biology and medicine. While cardiomyocytes can be generated from human pluripotent stem (hPSC) cells in vitro, it has proven difficult to use these cells to generate a large scale, mature human heart ventricular muscle graft on the injured heart in vivo. The central objective of this proposal is to optimize the generation of a large-scale pure, fully functional human ventricular muscle patch in vivo through the self-assembly of purified human ventricular progenitors and the localized expression of defined paracrine factors that drive their expansion, differentiation, vascularization, matrix formation, and maturation. Recently, we have found that purified hPSC-derived ventricular progenitors (HVPs) can self-assemble in vivo on the epicardial surface into a 3D vascularized, and functional ventricular patch with its own extracellular matrix via a cell autonomous pathway. A two-step protocol and FACS purification of HVP receptors can generate billions of pure HVPs- The current proposal will lead to the identification of defined paracrine pathways to enhance the survival, grafting/implantation, expansion, differentiation, matrix formation, vascularization and maturation of the graft in vivo. We will captalize on our unique HVP system and our novel modRNA technology to deliver therapeutic strategies by using the in vivo human ventricular muscle to model in vivo arrhythmogenic cardiomyopathy, and optimize the ability of the graft to compensate for the massive loss of functional muscle during ischemic cardiomyopathy and post-myocardial infarction. The studies will lead to new in vivo chimeric models of human cardiac disease and an experimental paradigm to optimize organ-on-organ cardiac tissue engineers of an in vivo, functional mature ventricular patch for cardiomyopathy
Max ERC Funding
2 149 228 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ALK7
Project Metabolic control by the TGF-² superfamily receptor ALK7: A novel regulator of insulin secretion, fat accumulation and energy balance
Researcher (PI) Carlos Ibanez
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2008-AdG
Summary The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Summary
The aim of this proposal is to understand a novel regulatory signaling network controlling insulin secretion, fat accumulation and energy balance centered around selected components of the TGF-² signaling system, including Activins A and B, GDF-3 and their receptors ALK7 and ALK4. Recent results from my laboratory indicate that these molecules are part of paracrine signaling networks that control important functions in pancreatic islets and adipose tissue through feedback inhibition and feed-forward regulation. These discoveries have open up a new research area with important implications for the understanding of metabolic networks and the treatment of human metabolic syndromes, such as diabetes and obesity.
To drive progress in this new research area beyond the state-of-the-art it is proposed to: i) Elucidate the molecular mechanisms by which Activins regulate Ca2+ influx and insulin secretion in pancreatic ²-cells; ii) Elucidate the molecular mechanisms underlying the effects of GDF-3 on adipocyte metabolism, turnover and fat accumulation; iii) Investigate the interplay between insulin levels and fat deposition in the development of insulin resistance using mutant mice lacking Activin B and GDF-3; iv) Investigate tissue-specific contributions of ALK7 and ALK4 signaling to metabolic control by generating and characterizing conditional mutant mice; v) Investigate the effects of specific and reversible inactivation of ALK7 and ALK4 on metabolic regulation using a novel chemical-genetic approach based on analog-sensitive alleles.
This is research of a high-gain/high-risk nature. It is posed to open unique opportunities for further exploration of complex metabolic networks. The development of drugs capable of enhancing insulin secretion, limiting fat accumulation and ameliorating diet-induced obesity by targeting components of the ALK7 signaling network will find a strong rationale in the results of the proposed work.
Max ERC Funding
2 462 154 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym ANGIOFAT
Project New mechanisms of angiogenesis modulators in switching between white and brown adipose tissues
Researcher (PI) Yihai Cao
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2009-AdG
Summary Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Summary
Understanding the molecular mechanisms underlying adipose blood vessel growth or regression opens new fundamentally insight into novel therapeutic options for the treatment of obesity and its related metabolic diseases such as type 2 diabetes and cancer. Unlike any other tissues in the body, the adipose tissue constantly experiences expansion and shrinkage throughout the adult life. Adipocytes in the white adipose tissue have the ability to switch into metabolically highly active brown-like adipocytes. Brown adipose tissue (BAT) contains significantly higher numbers of microvessels than white adipose tissue (WAT) in order to adopt the high rates of metabolism. Thus, an angiogenic phenotype has to be switched on during the transition from WAT into BAT. We have found that acclimation of mice in cold could induce transition from inguinal and epidedymal WAT into BAT by upregulation of angiogenic factor expression and down-regulations of angiogenesis inhibitors (Xue et al, Cell Metabolism, 2009). The transition from WAT into BAT is dependent on vascular endothelial growth factor (VEGF) that primarily targets on vascular endothelial cells via a tissue hypoxia-independent mechanism. VEGF blockade significantly alters adipose tissue metabolism. In another genetic model, we show similar findings that angiogenesis is crucial to mediate the transition from WAT into BAT (Xue et al, PNAS, 2008). Here we propose that the vascular tone determines the metabolic switch between WAT and BAT. Characterization of these novel angiogenic pathways may reveal new mechanisms underlying development of obesity- and metabolism-related disease complications and may define novel therapeutic targets. Thus, the benefit of this research proposal is enormous and is aimed to treat the most common and highly risk human health conditions in the modern time.
Max ERC Funding
2 411 547 €
Duration
Start date: 2010-03-01, End date: 2015-02-28
Project acronym ASTROGEOBIOSPHERE
Project An astronomical perspective on Earth's geological record and evolution of life
Researcher (PI) Birger Schmitz
Host Institution (HI) LUNDS UNIVERSITET
Call Details Advanced Grant (AdG), PE10, ERC-2011-ADG_20110209
Summary "This project will develop the use of relict, extraterrestrial minerals in Archean to Cenozoic slowly formed sediments as tracers of events in the solar system and cosmos, and to decipher the possible relation between such events and evolution of life and environmental change on Earth. There has been consensus that it would not be possible to reconstruct variations in the flux of different types of meteorites to Earth through the ages. Meteorite falls are rare and meteorites weather and decay rapidly on the Earth surface. However, the last years we have developed the first realistic approach to circumvent these problems. Almost all meteorite types contain a small fraction of spinel minerals that survives weathering and can be recovered from large samples of condensed sediments of any age. Inside the spinels we can locate by synchrotron-light X-ray tomography 1-30 micron sized inclusions of most of the other minerals that made up the original meteorite. With cutting-edge frontier microanalyses such as Ne-21 (solar wind, galactic rays), oxygen isotopes (meteorite group and type) and cosmic ray tracks (supernova densities) we will be able to unravel from the geological record fundamental new information about the solar system at specific times through the past 3.8 Gyr. Variations in flux and types of meteorites may reflect solar-system and galaxy gravity disturbances as well as the sequence of disruptions of the parent bodies for meteorite types known and not yet known. Cosmic-ray tracks in spinels may identify the galactic year (230 Myr) in the geological record. For the first time it will be possible to systematically relate major global biotic and tectonic events, changes in sea-level, climate and asteroid and comet impacts to what happened in the larger astronomical realm. In essence, the project is a robust approach to establish a pioneer ""astrostratigraphy"" for Earth's geological record, complementing existing bio-, chemo-, and magnetostratigraphies."
Summary
"This project will develop the use of relict, extraterrestrial minerals in Archean to Cenozoic slowly formed sediments as tracers of events in the solar system and cosmos, and to decipher the possible relation between such events and evolution of life and environmental change on Earth. There has been consensus that it would not be possible to reconstruct variations in the flux of different types of meteorites to Earth through the ages. Meteorite falls are rare and meteorites weather and decay rapidly on the Earth surface. However, the last years we have developed the first realistic approach to circumvent these problems. Almost all meteorite types contain a small fraction of spinel minerals that survives weathering and can be recovered from large samples of condensed sediments of any age. Inside the spinels we can locate by synchrotron-light X-ray tomography 1-30 micron sized inclusions of most of the other minerals that made up the original meteorite. With cutting-edge frontier microanalyses such as Ne-21 (solar wind, galactic rays), oxygen isotopes (meteorite group and type) and cosmic ray tracks (supernova densities) we will be able to unravel from the geological record fundamental new information about the solar system at specific times through the past 3.8 Gyr. Variations in flux and types of meteorites may reflect solar-system and galaxy gravity disturbances as well as the sequence of disruptions of the parent bodies for meteorite types known and not yet known. Cosmic-ray tracks in spinels may identify the galactic year (230 Myr) in the geological record. For the first time it will be possible to systematically relate major global biotic and tectonic events, changes in sea-level, climate and asteroid and comet impacts to what happened in the larger astronomical realm. In essence, the project is a robust approach to establish a pioneer ""astrostratigraphy"" for Earth's geological record, complementing existing bio-, chemo-, and magnetostratigraphies."
Max ERC Funding
1 950 000 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym ATMOGAIN
Project Atmospheric Gas-Aerosol Interface:
From Fundamental Theory to Global Effects
Researcher (PI) Ilona Anniina Riipinen
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary Atmospheric aerosol particles are a major player in the earth system: they impact the climate by scattering and absorbing solar radiation, as well as regulating the properties of clouds. On regional scales aerosol particles are among the main pollutants deteriorating air quality. Capturing the impact of aerosols is one of the main challenges in understanding the driving forces behind changing climate and air quality.
Atmospheric aerosol numbers are governed by the ultrafine (< 100 nm in diameter) particles. Most of these particles have been formed from atmospheric vapours, and their fate and impacts are governed by the mass transport processes between the gas and particulate phases. These transport processes are currently poorly understood. Correct representation of the aerosol growth/shrinkage by condensation/evaporation of atmospheric vapours is thus a prerequisite for capturing the evolution and impacts of aerosols.
I propose to start a research group that will address the major current unknowns in atmospheric ultrafine particle growth and evaporation. First, we will develop a unified theoretical framework to describe the mass accommodation processes at aerosol surfaces, aiming to resolve the current ambiguity with respect to the uptake of atmospheric vapours by aerosols. Second, we will study the condensational properties of selected organic compounds and their mixtures. Organic compounds are known to contribute significantly to atmospheric aerosol growth, but the properties that govern their condensation, such as saturation vapour pressures and activities, are largely unknown. Third, we aim to resolve the gas and particulate phase processes that govern the growth of realistic atmospheric aerosol. Fourth, we will parameterize ultrafine aerosol growth, implement the parameterizations to chemical transport models, and quantify the impact of these condensation and evaporation processes on global and regional aerosol budgets.
Summary
Atmospheric aerosol particles are a major player in the earth system: they impact the climate by scattering and absorbing solar radiation, as well as regulating the properties of clouds. On regional scales aerosol particles are among the main pollutants deteriorating air quality. Capturing the impact of aerosols is one of the main challenges in understanding the driving forces behind changing climate and air quality.
Atmospheric aerosol numbers are governed by the ultrafine (< 100 nm in diameter) particles. Most of these particles have been formed from atmospheric vapours, and their fate and impacts are governed by the mass transport processes between the gas and particulate phases. These transport processes are currently poorly understood. Correct representation of the aerosol growth/shrinkage by condensation/evaporation of atmospheric vapours is thus a prerequisite for capturing the evolution and impacts of aerosols.
I propose to start a research group that will address the major current unknowns in atmospheric ultrafine particle growth and evaporation. First, we will develop a unified theoretical framework to describe the mass accommodation processes at aerosol surfaces, aiming to resolve the current ambiguity with respect to the uptake of atmospheric vapours by aerosols. Second, we will study the condensational properties of selected organic compounds and their mixtures. Organic compounds are known to contribute significantly to atmospheric aerosol growth, but the properties that govern their condensation, such as saturation vapour pressures and activities, are largely unknown. Third, we aim to resolve the gas and particulate phase processes that govern the growth of realistic atmospheric aerosol. Fourth, we will parameterize ultrafine aerosol growth, implement the parameterizations to chemical transport models, and quantify the impact of these condensation and evaporation processes on global and regional aerosol budgets.
Max ERC Funding
1 498 099 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym BBBARRIER
Project Mechanisms of regulation of the blood-brain barrier; towards opening and closing the barrier on demand
Researcher (PI) Björn Christer Betsholtz
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2011-ADG_20110310
Summary In the bone-enclosed CNS, increased vascular permeability may cause life-threatening tissue swelling, and/or ischemia and inflammation which compromise tissue repair after trauma or stroke. The brain vasculature possesses several unique features collectively named the blood-brain barrier (BBB) in which passive permeability is almost completely abolished and replaced by a complex of specific transport mechanisms. The BBB is necessary to uphold the specific milieu necessary for neuronal function. Whereas breakdown of the BBB is part of many CNS diseases, including stroke, neuroinflammation, trauma and neurodegenerative disorders, its molecular mechanisms and consequences are unclear and debated. Conversely, the intact BBB is a huge obstacle for drug delivery to the brain. Research on the BBB therefore has two seemingly opposing aims: 1) to seal a damaged BBB and protect the brain from toxic blood products, and 2) to open the BBB “on demand” for drug delivery. A major problem in the BBB field has been the lack of in vivo animal models for molecular and functional studies. So far, available in vitro models are not recapitulating the in vivo BBB. Our recent work on mouse models lacking pericytes, a BBB-associated cell type, demonstrates a specific role for pericytes in the development and regulation of the mammalian BBB. These animal models are the first ones showing a general and significant BBB impairment in adulthood, and as such they provide a unique opportunity to address molecular mechanisms of BBB disruption in disease and in drug transport across the BBB. Importantly, the new models and tools that we have developed allow us to search for relevant druggable mechanisms and molecular targets in the BBB. The long-term goals of this proposal are to develop molecular strategies and tools to open and close the BBB “on demand” for drug delivery to the CNS, and to explore the importance and mechanisms of BBB dysfunction in neurodegenerative diseases and stroke.
Summary
In the bone-enclosed CNS, increased vascular permeability may cause life-threatening tissue swelling, and/or ischemia and inflammation which compromise tissue repair after trauma or stroke. The brain vasculature possesses several unique features collectively named the blood-brain barrier (BBB) in which passive permeability is almost completely abolished and replaced by a complex of specific transport mechanisms. The BBB is necessary to uphold the specific milieu necessary for neuronal function. Whereas breakdown of the BBB is part of many CNS diseases, including stroke, neuroinflammation, trauma and neurodegenerative disorders, its molecular mechanisms and consequences are unclear and debated. Conversely, the intact BBB is a huge obstacle for drug delivery to the brain. Research on the BBB therefore has two seemingly opposing aims: 1) to seal a damaged BBB and protect the brain from toxic blood products, and 2) to open the BBB “on demand” for drug delivery. A major problem in the BBB field has been the lack of in vivo animal models for molecular and functional studies. So far, available in vitro models are not recapitulating the in vivo BBB. Our recent work on mouse models lacking pericytes, a BBB-associated cell type, demonstrates a specific role for pericytes in the development and regulation of the mammalian BBB. These animal models are the first ones showing a general and significant BBB impairment in adulthood, and as such they provide a unique opportunity to address molecular mechanisms of BBB disruption in disease and in drug transport across the BBB. Importantly, the new models and tools that we have developed allow us to search for relevant druggable mechanisms and molecular targets in the BBB. The long-term goals of this proposal are to develop molecular strategies and tools to open and close the BBB “on demand” for drug delivery to the CNS, and to explore the importance and mechanisms of BBB dysfunction in neurodegenerative diseases and stroke.
Max ERC Funding
2 499 427 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym BETAIMAGE
Project An in vivo imaging approach to understand pancreatic beta-cell signal-transduction
Researcher (PI) Per-Olof Berggren
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS4, ERC-2013-ADG
Summary The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Summary
The challenge in cell physiology/pathology today is to translate in vitro findings to the living organism. We have developed a unique approach where signal-transduction can be investigated in vivo non-invasively, longitudinally at single cell resolution, using the anterior chamber of the eye as a natural body window for imaging. We will use this approach to understand how the universally important and highly complex signal Ca2+ is regulated in the pancreatic beta-cell, while localized in the vascularized and innervated islet of Langerhans, and how that affects the insulin secretory machinery in vivo. Engrafted islets in the eye take on identical innervation- and vascularization patterns as those in the pancreas and are proficient in regulating glucose homeostasis in the animal. Since the pancreatic islet constitutes a micro-organ, this imaging approach offers a seminal model system to understand Ca2+ signaling in individual cells at the organ level in real life. We will test the hypothesis that the Ca2+-signal has a key role in pancreatic beta-cell function and survival in vivo and that perturbation in the Ca2+-signal serves as a common denominator for beta-cell pathology associated with impaired glucose homeostasis and diabetes. Of special interest is how innervation impacts on Ca2+-dynamics and the integration of autocrine, paracrine and endocrine signals in fine-tuning the Ca2+-signal with regard to beta-cell function and survival. We aim to define key defects in the machinery regulating Ca2+-dynamics in association with the autoimmune reaction, inflammation and obesity eventually resulting in diabetes. Our imaging platform will be applied to clarify in vivo regulation of Ca2+-dynamics in both healthy and diabetic human beta-cells. To define novel drugable targets for treatment of diabetes, it is crucial to identify similarities and differences in the molecular machinery regulating the in vivo Ca2+-signal in the human and in the rodent beta-cell.
Max ERC Funding
2 499 590 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BIOFINDER
Project New biomarkers for Alzheimer’s & Parkinson’s diseases - key tools for early diagnosis and drug development
Researcher (PI) Oskar Hansson
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common in elderly and the prevalence of these is increasing. AD and PD have distinct pathogenesis, which precede the overt clinical symptoms by 10-15 years, opening a window for early diagnosis and treatment. New disease-modifying therapies are likely to be most efficient if initiated before the patients exhibit overt symptoms, making biomarkers for early diagnosis crucial for future clinical trials. Validated biomarkers would speed up initiation of treatment, avoid unnecessary investigations, and reduce patient insecurity.
AIMS: (1) identify and validate accurate and cost-effective blood-based biomarkers for early identification of those at high risk to develop AD and PD, (2) develop algorithms using advanced imaging and cerebrospinal fluid biomarkers for earlier more accurate diagnoses, and (3) better understand the underlying pathology and early progression of AD and PD, aiming at finding new relevant drug targets.
We will assess well-characterized and clinically relevant populations of patients and healthy elderly. We will use population- and clinic-based cohorts and follow them prospectively for 4 year. Participants will undergo neurocognitive evaluation, provide blood and cerebrospinal fluid, and have brain imaging using advanced MRI protocols and a newly developed PET-tracer visualizing brain amyloid. Sample will be analyzed with quantitative mass spectrometry and high sensitivity immunoassays.
New biomarkers and brain imaging techniques will aid early diagnosis and facilitate the development of disease-modifying therapies, since treatment can start earlier in the disease process. New methods to quantify relevant drug targets, such as oligomers of β-amyloid and α-synuclein, will be vital when selecting drug candidates for large-scale clinical trials. By improving both diagnosis and therapies the social and economic burden of dementia might be reduced by expanding the period of healthy and active aging
Summary
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are common in elderly and the prevalence of these is increasing. AD and PD have distinct pathogenesis, which precede the overt clinical symptoms by 10-15 years, opening a window for early diagnosis and treatment. New disease-modifying therapies are likely to be most efficient if initiated before the patients exhibit overt symptoms, making biomarkers for early diagnosis crucial for future clinical trials. Validated biomarkers would speed up initiation of treatment, avoid unnecessary investigations, and reduce patient insecurity.
AIMS: (1) identify and validate accurate and cost-effective blood-based biomarkers for early identification of those at high risk to develop AD and PD, (2) develop algorithms using advanced imaging and cerebrospinal fluid biomarkers for earlier more accurate diagnoses, and (3) better understand the underlying pathology and early progression of AD and PD, aiming at finding new relevant drug targets.
We will assess well-characterized and clinically relevant populations of patients and healthy elderly. We will use population- and clinic-based cohorts and follow them prospectively for 4 year. Participants will undergo neurocognitive evaluation, provide blood and cerebrospinal fluid, and have brain imaging using advanced MRI protocols and a newly developed PET-tracer visualizing brain amyloid. Sample will be analyzed with quantitative mass spectrometry and high sensitivity immunoassays.
New biomarkers and brain imaging techniques will aid early diagnosis and facilitate the development of disease-modifying therapies, since treatment can start earlier in the disease process. New methods to quantify relevant drug targets, such as oligomers of β-amyloid and α-synuclein, will be vital when selecting drug candidates for large-scale clinical trials. By improving both diagnosis and therapies the social and economic burden of dementia might be reduced by expanding the period of healthy and active aging
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym BIOMENDELIAN
Project Linking Cardiometabolic Disease and Cancer in the Level of Genetics, Circulating Biomarkers, Microbiota and Environmental Risk Factors
Researcher (PI) Marju Orho-Melander
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Summary
Cardiovascular disease (CVD), type 2 diabetes (T2D) and obesity, collectively referred to as cardiometabolic disease, together with cancer are the major morbidities and causes of death. With few exceptions, research on cardiometabolic disease and cancer is funded, studied and clinically applied separately without fully taking advantage of knowledge on common pathways and treatment targets through interdisciplinary synergies. The purpose of this proposal is to reveal causal factors connecting and disconnecting cardiometabolic diseases and cancer, and to understand interactions between gut microbiota, host diet and genetic susceptibility in a comprehensive prospective cohort study design to subsequently allow design of intervention strategies to guide more personalized disease prevention.
1. We investigate causality between genetic risk factors for cardiometabolic disease associated traits and future incidence of T2D, CVD, cancer (total/breast/colon/prostate) and mortality (total, CVD- and cancer mortality), searching for causal factors in a prospective cohort with >15 y follow-up (N>30,000, incident cases N=3550, 4713, 5975, 6115 for T2D, CVD, cancer, mortality)
2. For the first time in a large population (N=6000), we investigate how gut and oral microbiome are regulated by dietary factors, gut satiety peptides and host genetics, and how such connections relate to cardiometabolic disease associated traits and cancer
3. We investigate the role of diet and gene-diet interactions of importance for cardiometabolic disease and cancer
4. We perform genotype, biomarker and gut microbiota based diet intervention studies.
This inter-disciplinary project contributes to biological understanding of basic disease mechanisms and takes steps towards better possibilities to prevent and treat individuals at high risk for cardiometabolic disease, cancer and death.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BloodVariome
Project Genetic variation exposes regulators of blood cell formation in vivo in humans
Researcher (PI) Björn Erik Ake NILSSON
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS7, ERC-2017-COG
Summary The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Summary
The human hematopoietic system is a paradigmatic, stem cell-maintained organ with enormous cell turnover. Hundreds of billions of new blood cells are produced each day. The process is tightly regulated, and susceptible to perturbation due to genetic variation.
In this project, we will explore an innovative, population-genetic approach to find regulators of blood cell formation. Unlike traditional studies on hematopoiesis in vitro or in animal models, we will exploit natural genetic variation to identify DNA sequence variants and genes that influence blood cell formation in vivo in humans. Instead of inserting artificial mutations in mice, we will read out ripples from the experiments that nature has performed during evolution.
Building on our previous work, unique population-based materials, mathematical modeling, and the latest genomics and genome editing techniques, we will:
1. Develop high-resolution association data and analysis methods to find DNA sequence variants influencing human hematopoiesis, including stem- and progenitor stages.
2. Identify sequence variants and genes influencing specific stages of adult and fetal/perinatal hematopoiesis.
3. Define the function, and disease associations, of identified variants and genes.
Led by the applicant, the project will involve researchers at Lund University, Royal Institute of Technology and deCODE Genetics, and will be carried out in strong environments. It has been preceded by significant preparatory work. It will provide a first detailed analysis of how genetic variation influences human hematopoiesis, potentially increasing our understanding, and abilities to control, diseases marked by abnormal blood cell formation (e.g., leukemia).
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-10-01, End date: 2023-09-30