Project acronym 3DBIOLUNG
Project Bioengineering lung tissue using extracellular matrix based 3D bioprinting
Researcher (PI) Darcy WAGNER
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Summary
Chronic lung diseases are increasing in prevalence with over 65 million patients worldwide. Lung transplantation remains the only potential option at end-stage disease. Around 4000 patients receive lung transplants annually with more awaiting transplantation, including 1000 patients in Europe. New options to increase available tissue for lung transplantation are desperately needed.
An exciting new research area focuses on generating lung tissue ex vivo using bioengineering approaches. Scaffolds can be generated from synthetic or biologically-derived (acellular) materials, seeded with cells and grown in a bioreactor prior to transplantation. Ideally, scaffolds would be seeded with cells derived from the transplant recipient, thus obviating the need for long-term immunosuppression. However, functional regeneration has yet to be achieved. New advances in 3D printing and 3D bioprinting (when cells are printed) indicate that this once thought of science-fiction concept might finally be mature enough for complex tissues, including lung. 3D bioprinting addresses a number of concerns identified in previous approaches, such as a) patient heterogeneity in acellular human scaffolds, b) anatomical differences in xenogeneic sources, c) lack of biological cues on synthetic materials and d) difficulty in manufacturing the complex lung architecture. 3D bioprinting could be a reproducible, scalable, and controllable approach for generating functional lung tissue.
The aim of this proposal is to use custom 3D bioprinters to generate constructs mimicking lung tissue using an innovative approach combining primary cells, the engineering reproducibility of synthetic materials, and the biologically conductive properties of acellular lung (hybrid). We will 3D bioprint hybrid murine and human lung tissue models and test gas exchange, angiogenesis and in vivo immune responses. This proposal will be a critical first step in demonstrating feasibility of 3D bioprinting lung tissue.
Max ERC Funding
1 499 975 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ARTSILK
Project Novel approaches to the generation of artificial spider silk superfibers
Researcher (PI) Anna RISING
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Summary
Spider silk is Nature’s high performance material that has the potential to revolutionize the materials industry. However, production and spinning of artificial spider silk fibers are challenging, and current methods to produce silk fibers include denaturing conditions which prevent the silk proteins from assembling into fibers in the same complex way as native silk proteins do. In order to fulfill the potential of spider silk we need to increase our understanding of the silk formation process and decipher how protein folding and interactions relate to mechanical properties of the resulting silk fiber. Recent insights into the physiology and molecular mechanisms of the spinning process has made it possible to develop a biomimetic artificial spider silk spinning device (see our publications Andersson et al. Nat Chem Biol. 2017; Otikovs et al. Angew Chemie Int Engl Ed. 2017). We are, for the first time, able to spin artificial silk fibers in which the proteins adopt correct secondary, tertiary and quaternary structures.
The overall objective of ARTSILK is to build on these recent technical leaps and use state-of-the-art technologies to generate artificial silk fibers that are equal or superior to native spider silk in terms of toughness and tensile strength.
To reach the overall objective we will use the recently mapped spider genome, protein engineering and single cell RNA (ScRNA) sequencing to design novel silk proteins for fiber production. We will also study the relationship between protein secondary structure formation and fiber mechanical properties in order to decipher the ques that determine mechanical properties of the fiber. This knowledge will be important also for the basic understanding of how soluble proteins covert into b-sheet rich fibrils in, e.g., Alzheimer’s disease. Finally, we will use microfluidic chips to engineer the next generation spinning device and 3D-printing techniques to make reproducible three-dimensional structures of spider silk.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym DrivenByPollinators
Project Driven by mutualists: how declines in pollinators impact plant communities and ecosystemfunctioning
Researcher (PI) Yann Mats CLOUGH
Host Institution (HI) LUNDS UNIVERSITET
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Summary
Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Max ERC Funding
1 998 842 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym e-NeuroPharma
Project Electronic Neuropharmacology
Researcher (PI) Rolf Magnus BERGGREN
Host Institution (HI) LINKOPINGS UNIVERSITET
Call Details Advanced Grant (AdG), PE5, ERC-2018-ADG
Summary As the population ages, neurodegenerative diseases (ND) will have a devastating impact on individuals and society. Despite enormous research efforts there is still no cure for these diseases, only care! The origin of ND is hugely complex, spanning from the molecular level to systemic processes, causing malfunctioning of signalling in the central nervous system (CNS). This signalling includes the coupled processing of biochemical and electrical signals, however current approaches for symptomatic- and disease modifying treatments are all based on biochemical approaches, alone.
Organic bioelectronics has arisen as a promising technology providing signal translation, as sensors and modulators, across the biology-technology interface; especially, it has proven unique in neuronal applications. There is great opportunity with organic bioelectronics since it can complement biochemical pharmacology to enable a twinned electric-biochemical therapy for ND and neurological disorders. However, this technology is traditionally manufactured on stand-alone substrates. Even though organic bioelectronics has been manufactured on flexible and soft carriers in the past, current technology consume space and volume, that when applied to CNS, rule out close proximity and amalgamation between the bioelectronics technology and CNS components – features that are needed in order to reach high therapeutic efficacy.
e-NeuroPharma includes development of innovative organic bioelectronics, that can be in-vivo-manufactured within the brain. The overall aim is to evaluate and develop electrodes, delivery devices and sensors that enable a twinned biochemical-electric therapy approach to combat ND and other neurological disorders. e-NeuroPharma will focus on the development of materials that can cross the blood-brain-barrier, that self-organize and -polymerize along CNS components, and that record and regulate relevant electrical, electrochemical and physical parameters relevant to ND and disorders
Summary
As the population ages, neurodegenerative diseases (ND) will have a devastating impact on individuals and society. Despite enormous research efforts there is still no cure for these diseases, only care! The origin of ND is hugely complex, spanning from the molecular level to systemic processes, causing malfunctioning of signalling in the central nervous system (CNS). This signalling includes the coupled processing of biochemical and electrical signals, however current approaches for symptomatic- and disease modifying treatments are all based on biochemical approaches, alone.
Organic bioelectronics has arisen as a promising technology providing signal translation, as sensors and modulators, across the biology-technology interface; especially, it has proven unique in neuronal applications. There is great opportunity with organic bioelectronics since it can complement biochemical pharmacology to enable a twinned electric-biochemical therapy for ND and neurological disorders. However, this technology is traditionally manufactured on stand-alone substrates. Even though organic bioelectronics has been manufactured on flexible and soft carriers in the past, current technology consume space and volume, that when applied to CNS, rule out close proximity and amalgamation between the bioelectronics technology and CNS components – features that are needed in order to reach high therapeutic efficacy.
e-NeuroPharma includes development of innovative organic bioelectronics, that can be in-vivo-manufactured within the brain. The overall aim is to evaluate and develop electrodes, delivery devices and sensors that enable a twinned biochemical-electric therapy approach to combat ND and other neurological disorders. e-NeuroPharma will focus on the development of materials that can cross the blood-brain-barrier, that self-organize and -polymerize along CNS components, and that record and regulate relevant electrical, electrochemical and physical parameters relevant to ND and disorders
Max ERC Funding
3 237 335 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym Epi4MS
Project Targeting the epigenome: towards a better understanding of disease pathogenesis and novel therapeutic strategies in Multiple Sclerosis
Researcher (PI) Maja JAGODIC
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Summary
Multiple Sclerosis (MS) is a leading cause of unpredictable and incurable progressive disability in young adults. Although the exact cause remains unknown, this immune-mediated disease is likely triggered by environmental factors in genetically predisposed individuals. I propose that epigenetic mechanisms, which regulate gene expression without affecting the genetic code, mediate the processes that cause MS and that aberrant epigenetic states can be corrected, spearheading the development of alternative therapies. We will exploit the stable and reversible nature of epigenetic marks, in particular DNA methylation, to gain insights into the novel modifiable disease mechanisms by studying the target organ in a way that has not been possible before. This highly ambitious project comprises three synergistic facets formulated in specific aims to: (i) identify epigenetic states that characterize the pathogenesis of MS, (ii) prioritize functional epigenetic states using high-throughput epigenome-screens, and (iii) develop novel approaches for precision medicine based on correcting causal epigenetic states. Our unique MS biobank combined with cutting-edge methodologies to capture pathogenic cells and measure their functional states provides a rational starting point to identify MS targets. I will complement this approach with studies of the functional impact of MS targets using innovative in vitro screens, with the added value of unbiased discovery of robust regulators of specific MS pathways. Finally, my laboratory has extensive experience with animal models of MS and I will utilize these powerful systems to dissect molecular mechanisms of MS targets and test the therapeutic potential of targeted epigenome editing in vivo. Our findings will set the stage for a paradigm-shift in studying and treating chronic inflammatory diseases based on preventing and modulating aggressive immune responses by inducing self-sustained reversal of aberrant epigenetic states.
Max ERC Funding
1 998 798 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym EXCHANGE
Project Dynamic Complexes and Allosteric Regulation of Small Molecule Transporters
Researcher (PI) David DREW
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Consolidator Grant (CoG), LS1, ERC-2018-COG
Summary Solute Carrier (SLC) transporters mediate the translocation of substrates across membranes and after GPCRs represent the second-largest fraction of the human membrane proteome. SLC transporters are critical to cell homeostasis, which is reflected in the fact that more than a quarter is associated with Mendelian disease. Despite a few exceptions, however, they have been under-utilized as drug targets and most of the mechanistic understanding has been derived from bacterial homologues of these medically important proteins. In addition to subtle differences, bacterial homologues will not enable us to establish how the activities of many SLC transporters are allosterically regulated through the binding of accessory factors, e.g., hormones, to their non-membranous globular domains. Understanding the mechanisms by which their activities can be allosterically regulated through these complex and dynamic assembles is critical to human physiology and important for future drug design.
Our model system is a family of transporters known as sodium/proton exchangers (NHEs), which exchange sodium for protons across membranes to aid many fundamental processes in the cell. NHEs are important to the cell cycle, cell proliferation, cell migration and vesicle trafficking and are associated with a wide-spectrum of diseases. Their diverse portfolio is connected to the importance of pH homeostasis, and the binding of many different factors to a large, globular cytosolic domain exquisitely regulates them. To date, we have no structural information for any of the NHE’s, functional assays in liposomes are lacking, and many interaction partners are yet to be validated by in vitro studies. Determining the structure, dynamics, and allosteric regulation of NHEs will be an enormous challenge. However, we envisage that by achieving our objectives, we will reveal important mechanistic insights relevant not just to NHEs, but to many types of SLC transporters.
Summary
Solute Carrier (SLC) transporters mediate the translocation of substrates across membranes and after GPCRs represent the second-largest fraction of the human membrane proteome. SLC transporters are critical to cell homeostasis, which is reflected in the fact that more than a quarter is associated with Mendelian disease. Despite a few exceptions, however, they have been under-utilized as drug targets and most of the mechanistic understanding has been derived from bacterial homologues of these medically important proteins. In addition to subtle differences, bacterial homologues will not enable us to establish how the activities of many SLC transporters are allosterically regulated through the binding of accessory factors, e.g., hormones, to their non-membranous globular domains. Understanding the mechanisms by which their activities can be allosterically regulated through these complex and dynamic assembles is critical to human physiology and important for future drug design.
Our model system is a family of transporters known as sodium/proton exchangers (NHEs), which exchange sodium for protons across membranes to aid many fundamental processes in the cell. NHEs are important to the cell cycle, cell proliferation, cell migration and vesicle trafficking and are associated with a wide-spectrum of diseases. Their diverse portfolio is connected to the importance of pH homeostasis, and the binding of many different factors to a large, globular cytosolic domain exquisitely regulates them. To date, we have no structural information for any of the NHE’s, functional assays in liposomes are lacking, and many interaction partners are yet to be validated by in vitro studies. Determining the structure, dynamics, and allosteric regulation of NHEs will be an enormous challenge. However, we envisage that by achieving our objectives, we will reveal important mechanistic insights relevant not just to NHEs, but to many types of SLC transporters.
Max ERC Funding
1 999 875 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym EYELETS
Project A regenerative medicine approach in diabetes.
Researcher (PI) Per-Olof BERGGREN
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Advanced Grant (AdG), LS7, ERC-2018-ADG
Summary Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Summary
Pancreatic islet transplantation is essential for diabetes treatment. Outcome varies due to transplantation site, quality of islets and the fact that transplanted islets are affected by the same challenges as in situ islets. Tailor-making islets for transplantation by tissue engineering combined with a more favorable transplantation site that allows for both monitoring and local modulation of islet cells is thus instrumental. We have established the anterior chamber of the eye (ACE) as a favorable environment for long term survival of islet grafts and the cornea as a natural body window for non-invasive, longitudinal optical monitoring of islet function. ACE engrafted islets are able to maintain blood glucose homeostasis in diabetic animals. In addition to studies in non-human primates we are performing human clinical trials, the first patient already being transplanted. Tissue engineering of native islets is technically difficult. We will therefore apply genetically engineered islet organoids. This allows us to generate i) standardized material optimized for transplantation, function and survival, as well as ii) islet organoids suitable for monitoring (sensor islet organoids) and treating (metabolic islet organoids) insulin-dependent diabetes. We hypothesize that genetically engineered islet organoids transplanted to the ACE are superior to native pancreatic islets to monitor and treat insulin-dependent diabetes. Our overall aim is to create a platform allowing monitoring and treatment of insulin-dependent diabetes in mice that can be transferred to large animals for validation. The objective is to combine tissue engineering of islet cell organoids, transplantation to the ACE, synthetic biology, local pharmacological treatment strategies and the development of novel micro electronic/micro optical readout systems for islet cells. This regenerative medicine approach will follow our clinical trial programs and be transferred into the clinic to combat diabetes.
Max ERC Funding
2 500 000 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym GRASP
Project Overcoming plant graft incompatibility by modifying signalling and perception
Researcher (PI) Charles MELNYK
Host Institution (HI) SVERIGES LANTBRUKSUNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2018-STG
Summary For millennia, people have cut and joined together different plants through a process known as grafting. Plants tissues from different genotypes fuse, vasculature connects and a chimeric organism forms that combines desirable characteristics from different plants such as high yields or disease resistance. However, plants can only be grafted to closely related species and in some instances, they cannot be grafted to themselves. This phenomenon is referred to as graft incompatibility and the mechanistic basis is completely unknown. Our previous work on graft formation in Arabidopsis thaliana has uncovered genes that rapidly activate in grafted tissues to signal the presence of adjoining tissue and initiate a vascular reconnection process. These genes activate around the cut only during graft formation and present a powerful tool to screen large numbers of chemicals and genes that could promote tissue perception and vascular formation. With these sensors and our previously established grafting tools in the model plant Arabidopsis, we can address fundamental questions about grafting biology that have direct relevance to improving graft formation through:
1. Identifying genes required for the recognition response using forward and reverse genetic screens.
2. Determining and characterising signals that activate vascular induction using a chemical genetics screen.
3. Characterising the transcriptional basis for compatibility and incompatibility by analysing
tissues and species that graft and comparing these to tissues and species that do not graft.
4. Overcoming graft incompatibility and improving graft formation by applying the knowledge obtained from the three previous objectives.
We thus aim to broaden our fundamental understanding of the processes associated with grafting including wound healing, vascular formation and tissue regeneration, while at the same time, use this information to improve graft formation and expand the range of grafted species.
Summary
For millennia, people have cut and joined together different plants through a process known as grafting. Plants tissues from different genotypes fuse, vasculature connects and a chimeric organism forms that combines desirable characteristics from different plants such as high yields or disease resistance. However, plants can only be grafted to closely related species and in some instances, they cannot be grafted to themselves. This phenomenon is referred to as graft incompatibility and the mechanistic basis is completely unknown. Our previous work on graft formation in Arabidopsis thaliana has uncovered genes that rapidly activate in grafted tissues to signal the presence of adjoining tissue and initiate a vascular reconnection process. These genes activate around the cut only during graft formation and present a powerful tool to screen large numbers of chemicals and genes that could promote tissue perception and vascular formation. With these sensors and our previously established grafting tools in the model plant Arabidopsis, we can address fundamental questions about grafting biology that have direct relevance to improving graft formation through:
1. Identifying genes required for the recognition response using forward and reverse genetic screens.
2. Determining and characterising signals that activate vascular induction using a chemical genetics screen.
3. Characterising the transcriptional basis for compatibility and incompatibility by analysing
tissues and species that graft and comparing these to tissues and species that do not graft.
4. Overcoming graft incompatibility and improving graft formation by applying the knowledge obtained from the three previous objectives.
We thus aim to broaden our fundamental understanding of the processes associated with grafting including wound healing, vascular formation and tissue regeneration, while at the same time, use this information to improve graft formation and expand the range of grafted species.
Max ERC Funding
1 499 902 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym Growth regulation
Project The wide-spread bacterial toxin delivery systems and their role in multicellularity
Researcher (PI) Sanna KOSKINIEMI
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Bacteria live in environments where resources for growth are scarce and shared with other bacteria. The ability to inhibit the growth of other bacteria is thus favourable and most bacteria use multiple systems for such antagonistic interactions, including delivery of protein toxins to other bacteria (e.g. bacteriocins, type 6 secretion and contact-dependent growth inhibition systems). In addition to their role in competition, all these toxin delivery systems frequently deliver toxins to cells of the same genotype, i.e. cells immune to the toxic activity, but a function for self-delivery of toxins has never been identified. Recent evidence from our lab suggests that self-delivery of toxins generates population heterogeneity in terms of growth at high cell densities, i.e. upon cell-cell contacts. But if this is a common feature of all toxin delivery systems is not known. Here we will investigate if toxin delivery to cells immune to the toxin creates population heterogeneity in terms of growth, mutation rates and gene expression, and if this is important for bacterial evolution and multicellularity. As homologs for many of the toxins can also be found in eukaryotes, including multicellular organisms, we will investigate if the functions of these systems are also conserved across kingdoms.
We will particular characterize the role of bacterial toxin delivery systems for multicellular behaviour and adaptation to new growth environments. This research have important consequences for understanding cell-to-cell contacts and the organization of multicellular tissues in general; from how to control biofilm formation to the understanding of uncontrolled cell growth in higher eukaryotes.
Summary
Bacteria live in environments where resources for growth are scarce and shared with other bacteria. The ability to inhibit the growth of other bacteria is thus favourable and most bacteria use multiple systems for such antagonistic interactions, including delivery of protein toxins to other bacteria (e.g. bacteriocins, type 6 secretion and contact-dependent growth inhibition systems). In addition to their role in competition, all these toxin delivery systems frequently deliver toxins to cells of the same genotype, i.e. cells immune to the toxic activity, but a function for self-delivery of toxins has never been identified. Recent evidence from our lab suggests that self-delivery of toxins generates population heterogeneity in terms of growth at high cell densities, i.e. upon cell-cell contacts. But if this is a common feature of all toxin delivery systems is not known. Here we will investigate if toxin delivery to cells immune to the toxin creates population heterogeneity in terms of growth, mutation rates and gene expression, and if this is important for bacterial evolution and multicellularity. As homologs for many of the toxins can also be found in eukaryotes, including multicellular organisms, we will investigate if the functions of these systems are also conserved across kingdoms.
We will particular characterize the role of bacterial toxin delivery systems for multicellular behaviour and adaptation to new growth environments. This research have important consequences for understanding cell-to-cell contacts and the organization of multicellular tissues in general; from how to control biofilm formation to the understanding of uncontrolled cell growth in higher eukaryotes.
Max ERC Funding
1 499 765 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym GUTSY
Project The gut microbiota and its systemic effects on metabolism and atherosclerotic disease
Researcher (PI) Tove Elisabet FALL
Host Institution (HI) UPPSALA UNIVERSITET
Call Details Starting Grant (StG), LS7, ERC-2018-STG
Summary Atherosclerosis is the main pathological mechanism causing myocardial infarction and ischemic stroke. Evidence has mounted about the association between the gut microbiota and cardiovascular disease, but whether the associations are causal is largely unknown. For optimal prevention and treatment of cardiovascular disease, there is an urgent need to determine whether there are any true effects that might be targeted by interventions. The overall goal of this project is to assess causality between gut microbiota and atherosclerotic disease and to provide easily accessible biomarkers for an atherosclerosis-enhancing gut microbiota. To this end, the research program has three main objectives:
1.) Identification of gut microbiota characteristics associated with atherosclerosis measured by coronary computed tomography angiography and high-resolution carotid ultrasound in a population-based sample of 10,000 individuals and through prospective follow-up for myocardial infarction and ischemic stroke. The microbiota will be characterized by next-generation sequencing techniques in faecal samples.
2.) Identification of plasma biomarkers associated with an atherosclerosis- enhancing microbiota using comprehensive metabolomics profiling of 800 named metabolites in plasma from 800 individuals with replication in additional 800 individuals
3.) Clarification of the causal effects of gut microbiota characteristics on atherosclerosis, myocardial infarction and stroke by development of novel genetic instruments and applying Mendelian Randomization analysis
I have access to unique study materials and documented experience of successful projects using large scale -omics data and state-of-the-art epidemiological methodologies. My project is expected to lead to the identification of characteristics of an atherosclerosis-enhancing gut microbiota and associated plasma biomarkers that may open up new avenues for effective prevention of atherosclerotic disease.
Summary
Atherosclerosis is the main pathological mechanism causing myocardial infarction and ischemic stroke. Evidence has mounted about the association between the gut microbiota and cardiovascular disease, but whether the associations are causal is largely unknown. For optimal prevention and treatment of cardiovascular disease, there is an urgent need to determine whether there are any true effects that might be targeted by interventions. The overall goal of this project is to assess causality between gut microbiota and atherosclerotic disease and to provide easily accessible biomarkers for an atherosclerosis-enhancing gut microbiota. To this end, the research program has three main objectives:
1.) Identification of gut microbiota characteristics associated with atherosclerosis measured by coronary computed tomography angiography and high-resolution carotid ultrasound in a population-based sample of 10,000 individuals and through prospective follow-up for myocardial infarction and ischemic stroke. The microbiota will be characterized by next-generation sequencing techniques in faecal samples.
2.) Identification of plasma biomarkers associated with an atherosclerosis- enhancing microbiota using comprehensive metabolomics profiling of 800 named metabolites in plasma from 800 individuals with replication in additional 800 individuals
3.) Clarification of the causal effects of gut microbiota characteristics on atherosclerosis, myocardial infarction and stroke by development of novel genetic instruments and applying Mendelian Randomization analysis
I have access to unique study materials and documented experience of successful projects using large scale -omics data and state-of-the-art epidemiological methodologies. My project is expected to lead to the identification of characteristics of an atherosclerosis-enhancing gut microbiota and associated plasma biomarkers that may open up new avenues for effective prevention of atherosclerotic disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-01-01, End date: 2023-12-31