Project acronym 14Constraint
Project Radiocarbon constraints for models of C cycling in terrestrial ecosystems: from process understanding to global benchmarking
Researcher (PI) Susan Trumbore
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Summary
The overall goal of 14Constraint is to enhance the availability and use of radiocarbon data as constraints for process-based understanding of the age distribution of carbon in and respired by soils and ecosystems. Carbon enters ecosystems by a single process, photosynthesis. It returns by a range of processes that depend on plant allocation and turnover, the efficiency and rate of litter decomposition and the mechanisms stabilizing C in soils. Thus the age distribution of respired CO2 and the age of C residing in plants, litter and soils are diagnostic properties of ecosystems that provide key constraints for testing carbon cycle models. Radiocarbon, especially the transit of ‘bomb’ 14C created in the 1960s, is a powerful tool for tracing C exchange on decadal to centennial timescales. 14Constraint will assemble a global database of existing radiocarbon data (WP1) and demonstrate how they can constrain and test ecosystem carbon cycle models. WP2 will fill data gaps and add new data from sites in key biomes that have ancillary data sufficient to construct belowground C and 14C budgets. These detailed investigations will focus on the role of time lags caused in necromass and fine roots, as well as the dynamics of deep soil C. Spatial extrapolation beyond the WP2 sites will require sampling along global gradients designed to explore the relative roles of mineralogy, vegetation and climate on the age of C in and respired from soil (WP3). Products of this 14Constraint will include the first publicly available global synthesis of terrestrial 14C data, and will add over 5000 new measurements. This project is urgently needed before atmospheric 14C levels decline to below 1950 levels as expected in the next decade.
Max ERC Funding
2 283 747 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 3D Reloaded
Project 3D Reloaded: Novel Algorithms for 3D Shape Inference and Analysis
Researcher (PI) Daniel Cremers
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary Despite their amazing success, we believe that computer vision algorithms have only scratched the surface of what can be done in terms of modeling and understanding our world from images. We believe that novel image analysis techniques will be a major enabler and driving force behind next-generation technologies, enhancing everyday life and opening up radically new possibilities. And we believe that the key to achieving this is to develop algorithms for reconstructing and analyzing the 3D structure of our world.
In this project, we will focus on three lines of research:
A) We will develop algorithms for 3D reconstruction from standard color cameras and from RGB-D cameras. In particular, we will promote real-time-capable direct and dense methods. In contrast to the classical two-stage approach of sparse feature-point based motion estimation and subsequent dense reconstruction, these methods optimally exploit all color information to jointly estimate dense geometry and camera motion.
B) We will develop algorithms for 3D shape analysis, including rigid and non-rigid matching, decomposition and interpretation of 3D shapes. We will focus on algorithms which are optimal or near-optimal. One of the major computational challenges lies in generalizing existing 2D shape analysis techniques to shapes in 3D and 4D (temporal evolutions of 3D shape).
C) We will develop shape priors for 3D reconstruction. These can be learned from sample shapes or acquired during the reconstruction process. For example, when reconstructing a larger office algorithms may exploit the geometric self-similarity of the scene, storing a model of a chair and its multiple instances only once rather than multiple times.
Advancing the state of the art in geometric reconstruction and geometric analysis will have a profound impact well beyond computer vision. We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community.
Summary
Despite their amazing success, we believe that computer vision algorithms have only scratched the surface of what can be done in terms of modeling and understanding our world from images. We believe that novel image analysis techniques will be a major enabler and driving force behind next-generation technologies, enhancing everyday life and opening up radically new possibilities. And we believe that the key to achieving this is to develop algorithms for reconstructing and analyzing the 3D structure of our world.
In this project, we will focus on three lines of research:
A) We will develop algorithms for 3D reconstruction from standard color cameras and from RGB-D cameras. In particular, we will promote real-time-capable direct and dense methods. In contrast to the classical two-stage approach of sparse feature-point based motion estimation and subsequent dense reconstruction, these methods optimally exploit all color information to jointly estimate dense geometry and camera motion.
B) We will develop algorithms for 3D shape analysis, including rigid and non-rigid matching, decomposition and interpretation of 3D shapes. We will focus on algorithms which are optimal or near-optimal. One of the major computational challenges lies in generalizing existing 2D shape analysis techniques to shapes in 3D and 4D (temporal evolutions of 3D shape).
C) We will develop shape priors for 3D reconstruction. These can be learned from sample shapes or acquired during the reconstruction process. For example, when reconstructing a larger office algorithms may exploit the geometric self-similarity of the scene, storing a model of a chair and its multiple instances only once rather than multiple times.
Advancing the state of the art in geometric reconstruction and geometric analysis will have a profound impact well beyond computer vision. We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym 4DRepLy
Project Closing the 4D Real World Reconstruction Loop
Researcher (PI) Christian THEOBALT
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary 4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Summary
4D reconstruction, the camera-based dense dynamic scene reconstruction, is a grand challenge in computer graphics and computer vision. Despite great progress, 4D capturing the complex, diverse real world outside a studio is still far from feasible. 4DRepLy builds a new generation of high-fidelity 4D reconstruction (4DRecon) methods. They will be the first to efficiently capture all types of deformable objects (humans and other types) in crowded real world scenes with a single color or depth camera. They capture space-time coherent deforming geometry, motion, high-frequency reflectance and illumination at unprecedented detail, and will be the first to handle difficult occlusions, topology changes and large groups of interacting objects. They automatically adapt to new scene types, yet deliver models with meaningful, interpretable parameters. This requires far reaching contributions: First, we develop groundbreaking new plasticity-enhanced model-based 4D reconstruction methods that automatically adapt to new scenes. Second, we develop radically new machine learning-based dense 4D reconstruction methods. Third, these model- and learning-based methods are combined in two revolutionary new classes of 4DRecon methods: 1) advanced fusion-based methods and 2) methods with deep architectural integration. Both, 1) and 2), are automatically designed in the 4D Real World Reconstruction Loop, a revolutionary new design paradigm in which 4DRecon methods refine and adapt themselves while continuously processing unlabeled real world input. This overcomes the previously unbreakable scalability barrier to real world scene diversity, complexity and generality. This paradigm shift opens up a new research direction in graphics and vision and has far reaching relevance across many scientific fields. It enables new applications of profound social pervasion and significant economic impact, e.g., for visual media and virtual/augmented reality, and for future autonomous and robotic systems.
Max ERC Funding
1 977 000 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym 5COFM
Project Five Centuries of Marriages
Researcher (PI) Anna Cabré
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Summary
This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Max ERC Funding
1 847 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym 9 SALT
Project Reassessing Ninth Century Philosophy. A Synchronic Approach to the Logical Traditions
Researcher (PI) Christophe Florian Erismann
Host Institution (HI) UNIVERSITAT WIEN
Call Details Consolidator Grant (CoG), SH5, ERC-2014-CoG
Summary This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Summary
This project aims at a better understanding of the philosophical richness of ninth century thought using the unprecedented and highly innovative method of the synchronic approach. The hypothesis directing this synchronic approach is that studying together in parallel the four main philosophical traditions of the century – i.e. Latin, Greek, Syriac and Arabic – will bring results that the traditional enquiry limited to one tradition alone can never reach. This implies pioneering a new methodology to overcome the compartmentalization of research which prevails nowadays. Using this method is only possible because the four conditions of applicability – comparable intellectual environment, common text corpus, similar methodological perspective, commensurable problems – are fulfilled. The ninth century, a time of cultural renewal in the Carolingian, Byzantine and Abbasid empires, possesses the remarkable characteristic – which ensures commensurability – that the same texts, namely the writings of Aristotelian logic (mainly Porphyry’s Isagoge and Aristotle’s Categories) were read and commented upon in Latin, Greek, Syriac and Arabic alike.
Logic is fundamental to philosophical enquiry. The contested question is the human capacity to rationalise, analyse and describe the sensible reality, to understand the ontological structure of the world, and to define the types of entities which exist. The use of this unprecedented synchronic approach will allow us a deeper understanding of the positions, a clear identification of the a priori postulates of the philosophical debates, and a critical evaluation of the arguments used. It provides a unique opportunity to compare the different traditions and highlight the heritage which is common, to stress the specificities of each tradition when tackling philosophical issues and to discover the doctrinal results triggered by their mutual interactions, be they constructive (scholarly exchanges) or polemic (religious controversies).
Max ERC Funding
1 998 566 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym A-LIFE
Project Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics
Researcher (PI) Bernadett Barbara Weinzierl
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE10, ERC-2014-STG
Summary Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Summary
Aerosols (i.e. tiny particles suspended in the air) are regularly transported in huge amounts over long distances impacting air quality, health, weather and climate thousands of kilometers downwind of the source. Aerosols affect the atmospheric radiation budget through scattering and absorption of solar radiation and through their role as cloud/ice nuclei.
In particular, light absorption by aerosol particles such as mineral dust and black carbon (BC; thought to be the second strongest contribution to current global warming after CO2) is of fundamental importance from a climate perspective because the presence of absorbing particles (1) contributes to solar radiative forcing, (2) heats absorbing aerosol layers, (3) can evaporate clouds and (4) change atmospheric dynamics.
Considering this prominent role of aerosols, vertically-resolved in-situ data on absorbing aerosols are surprisingly scarce and aerosol-dynamic interactions are poorly understood in general. This is, as recognized in the last IPCC report, a serious barrier for taking the accuracy of climate models and predictions to the next level. To overcome this barrier, I propose to investigate aging, lifetime and dynamics of absorbing aerosol layers with a holistic end-to-end approach including laboratory studies, airborne field experiments and numerical model simulations.
Building on the internationally recognized results of my aerosol research group and my long-term experience with airborne aerosol measurements, the time seems ripe to systematically bridge the gap between in-situ measurements of aerosol microphysical and optical properties and the assessment of dynamical interactions of absorbing particles with aerosol layer lifetime through model simulations.
The outcomes of this project will provide fundamental new understanding of absorbing aerosol layers in the climate system and important information for addressing the benefits of BC emission controls for mitigating climate change.
Max ERC Funding
1 987 980 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31