Project acronym AuDACE
Project Attosecond Dynamics in Advanced Materials
Researcher (PI) Matteo LUCCHINI
Host Institution (HI) POLITECNICO DI MILANO
Country Italy
Call Details Starting Grant (StG), PE2, ERC-2019-STG
Summary Speed and performances of contemporary digital electronics are limited by the available device architectures and heat dissipation. Two-dimensional (2D) materials are emerging as one of the main candidates for designing new structures capable to overcome the current device limitations and foster the establishment of the electronics of the future. Due to the electron confinement in two directions, they are characterised by exotic physical, electronic and chemical properties, which are neither fully investigated nor understood. In particular, the lack of suitable tools hinders the possibility to study the ultrafast processes unfolding during light-matter interaction. Nevertheless, a clear understanding is required in order to leverage the unique properties of 2D materials. AuDACE aims to enter this unexplored region and investigate ultrafast electron, exciton and spin dynamics happening in advanced materials on time scales below few femtoseconds with unprecedented and ground-breaking possible outcome.
To reach this ambitious goal AuDACE will go beyond the state of the art and develop an innovative pump-probe beamline for transient absorption and reflectivity measurements based on arbitrarily polarised attosecond pulses in a two-foci geometry. Once the experimental techniques are established, my team and I will concentrate on ultrafast exciton dynamics in monolayer transition metal dichalcogenides (ML-TMDCs). In the final phase, AuDACE will focus on a new class of materials such as ferromagnetic ML-TMDCs to investigate the elusive physical mechanism responsible for ultrafast spin and magnetic dynamics. For the first time, a comprehensive investigation of these phenomena will become feasible on these little studied time scales. Due to the wide spectrum of relevant applications for 2D materials, I expect the outcome of AuDACE to have a crucial impact on the development of many key technological areas like optoelectronics, spintronics, valleytronics and photovoltaics.
Summary
Speed and performances of contemporary digital electronics are limited by the available device architectures and heat dissipation. Two-dimensional (2D) materials are emerging as one of the main candidates for designing new structures capable to overcome the current device limitations and foster the establishment of the electronics of the future. Due to the electron confinement in two directions, they are characterised by exotic physical, electronic and chemical properties, which are neither fully investigated nor understood. In particular, the lack of suitable tools hinders the possibility to study the ultrafast processes unfolding during light-matter interaction. Nevertheless, a clear understanding is required in order to leverage the unique properties of 2D materials. AuDACE aims to enter this unexplored region and investigate ultrafast electron, exciton and spin dynamics happening in advanced materials on time scales below few femtoseconds with unprecedented and ground-breaking possible outcome.
To reach this ambitious goal AuDACE will go beyond the state of the art and develop an innovative pump-probe beamline for transient absorption and reflectivity measurements based on arbitrarily polarised attosecond pulses in a two-foci geometry. Once the experimental techniques are established, my team and I will concentrate on ultrafast exciton dynamics in monolayer transition metal dichalcogenides (ML-TMDCs). In the final phase, AuDACE will focus on a new class of materials such as ferromagnetic ML-TMDCs to investigate the elusive physical mechanism responsible for ultrafast spin and magnetic dynamics. For the first time, a comprehensive investigation of these phenomena will become feasible on these little studied time scales. Due to the wide spectrum of relevant applications for 2D materials, I expect the outcome of AuDACE to have a crucial impact on the development of many key technological areas like optoelectronics, spintronics, valleytronics and photovoltaics.
Max ERC Funding
1 466 250 €
Duration
Start date: 2020-02-01, End date: 2025-01-31
Project acronym CAPTUR3D
Project CAPTURING THE PHYSICS OF LIFE ON 3D-TRAFFICKING SUBCELLULAR NANOSYSTEMS
Researcher (PI) Francesco CARDARELLI
Host Institution (HI) SCUOLA NORMALE SUPERIORE
Country Italy
Call Details Consolidator Grant (CoG), PE3, ERC-2019-COG
Summary Which physical principles govern life regulation at the level of subcellular, membrane-enclosed nanosystems, such as transport vesicles and organelles? How do they achieve controlled movements across the crowded intracellular world? Which is the structural and functional organization of their surface and their lumen? This is only a small subset of key open questions that the biophysical approach envisaged here will allow to answer directly within living matter, for the first time.
Thus far, state-of-the-art optical microscopy tools for delivering quantitative information in living matter failed to subtract the natural 3D movement of subcellular nanosystems while preserving the spatial and temporal resolution required to probe their structure and function at the molecular level.
CAPTUR3D will tackle this bottleneck. An excitation light-beam will be focused in a periodic orbit around the nanosystem of interest and used to localize its position with unprecedented spatial (~10 nm) and temporal (~1000 Hz frequency response) resolution. Such privileged observation point will push biophysical investigations to a new level. For the first time, state-of-the-art imaging technologies and analytical tools (e.g. fluorescence correlation spectroscopy), will be used to perform molecular investigations on a moving, nanoscopic reference system.
The insulin secretory granule (ISG) is selected as a paradigmatic case study. Key open issues at the ISG level are selected, namely: (i) ISG-environment interactions and their role in directing ISG trafficking, (ii) ISG-membrane spatiotemporal organization, (iii) ISG-lumen structural and functional organization, (iv) ISG alterations in type-2 diabetes (T2D). These issues will be tackled directly within human-derived Langherans islets.
CAPTUR3D is envisioned not only to foster our knowledge on T2D physiopathology but also to concomitantly drive an unprecedented revolution in the way we address living matter at the subcellular scale.
Summary
Which physical principles govern life regulation at the level of subcellular, membrane-enclosed nanosystems, such as transport vesicles and organelles? How do they achieve controlled movements across the crowded intracellular world? Which is the structural and functional organization of their surface and their lumen? This is only a small subset of key open questions that the biophysical approach envisaged here will allow to answer directly within living matter, for the first time.
Thus far, state-of-the-art optical microscopy tools for delivering quantitative information in living matter failed to subtract the natural 3D movement of subcellular nanosystems while preserving the spatial and temporal resolution required to probe their structure and function at the molecular level.
CAPTUR3D will tackle this bottleneck. An excitation light-beam will be focused in a periodic orbit around the nanosystem of interest and used to localize its position with unprecedented spatial (~10 nm) and temporal (~1000 Hz frequency response) resolution. Such privileged observation point will push biophysical investigations to a new level. For the first time, state-of-the-art imaging technologies and analytical tools (e.g. fluorescence correlation spectroscopy), will be used to perform molecular investigations on a moving, nanoscopic reference system.
The insulin secretory granule (ISG) is selected as a paradigmatic case study. Key open issues at the ISG level are selected, namely: (i) ISG-environment interactions and their role in directing ISG trafficking, (ii) ISG-membrane spatiotemporal organization, (iii) ISG-lumen structural and functional organization, (iv) ISG alterations in type-2 diabetes (T2D). These issues will be tackled directly within human-derived Langherans islets.
CAPTUR3D is envisioned not only to foster our knowledge on T2D physiopathology but also to concomitantly drive an unprecedented revolution in the way we address living matter at the subcellular scale.
Max ERC Funding
1 985 750 €
Duration
Start date: 2021-03-01, End date: 2026-02-28
Project acronym DeepSeep
Project Deep Serpentinization, H2, and high-pressure abiotic CH4
Researcher (PI) Alberto VITALE BROVARONE
Host Institution (HI) ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
Country Italy
Call Details Consolidator Grant (CoG), PE10, ERC-2019-COG
Summary The deep subsurface biosphere is the largest microbiological habitat on Earth, with biomass and contribution to biogeochemical cycles comparable to surface biosphere. Deciphering the parameters that control and sustain deep subsurface life is vital in understanding the functioning of our planet, and additionally provides key information on how life emerged and where it could exist elsewhere. Among these parameters are the sources of essential energy for deep life, such as H2 and CH4. Great effort has been made to identify geological processes producing these compounds within the subsurface biosphere. Conversely, the identification of deeper sources of H2 and CH4 produced outside the parameter space for life is lacking, even though they could dramatically change our understanding of the distribution and magnitude of deep life on Earth and potentially beyond. Convergent margins focus the largest recycling of C from the deep Earth to the biosphere and atmosphere. Current models of deep C cycling do not include H2-CH4 deep fluxes and therefore cannot assess their potential role in sustaining deep life. My recent work indicates that H2 and CH4 can be produced in large amounts abiotically in subduction zones well below the biosphere by high-P serpentinization processes. This opens new fundamental questions: What is the magnitude of deep H2 and CH4 at convergent margins? How do they affect deep C cycling? To what extent deep H2 and CH4 fluxes sustain the biosphere? DeepSeep will answer these questions by providing the first ever estimates of deep H2-CH4 fluxes, as well as the missing means to detect source areas at depth, and will establish deep H2-CH4 role on deep C cycling and on deep biosphere processes. By bridging the two most striking peculiarities of Earth, subduction and life, DeepSeep has the potential for transformative discoveries, with long-term implications for global C cycle modeling, climatology, and the emergence and search for life on Earth and beyond.
Summary
The deep subsurface biosphere is the largest microbiological habitat on Earth, with biomass and contribution to biogeochemical cycles comparable to surface biosphere. Deciphering the parameters that control and sustain deep subsurface life is vital in understanding the functioning of our planet, and additionally provides key information on how life emerged and where it could exist elsewhere. Among these parameters are the sources of essential energy for deep life, such as H2 and CH4. Great effort has been made to identify geological processes producing these compounds within the subsurface biosphere. Conversely, the identification of deeper sources of H2 and CH4 produced outside the parameter space for life is lacking, even though they could dramatically change our understanding of the distribution and magnitude of deep life on Earth and potentially beyond. Convergent margins focus the largest recycling of C from the deep Earth to the biosphere and atmosphere. Current models of deep C cycling do not include H2-CH4 deep fluxes and therefore cannot assess their potential role in sustaining deep life. My recent work indicates that H2 and CH4 can be produced in large amounts abiotically in subduction zones well below the biosphere by high-P serpentinization processes. This opens new fundamental questions: What is the magnitude of deep H2 and CH4 at convergent margins? How do they affect deep C cycling? To what extent deep H2 and CH4 fluxes sustain the biosphere? DeepSeep will answer these questions by providing the first ever estimates of deep H2-CH4 fluxes, as well as the missing means to detect source areas at depth, and will establish deep H2-CH4 role on deep C cycling and on deep biosphere processes. By bridging the two most striking peculiarities of Earth, subduction and life, DeepSeep has the potential for transformative discoveries, with long-term implications for global C cycle modeling, climatology, and the emergence and search for life on Earth and beyond.
Max ERC Funding
2 474 368 €
Duration
Start date: 2021-06-01, End date: 2026-05-31
Project acronym ELFO
Project Electronic Food: enabling edible electronic systems for biomedical and food monitoring applications
Researcher (PI) Mario CAIRONI
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Country Italy
Call Details Consolidator Grant (CoG), PE7, ERC-2019-COG
Summary ELFO will provide the foundations of a new enabling technology for disruptive edible electronic systems, with applications in advanced biomedical devices for continuous monitoring of the health status within the gastro-intestinal (GI) tract, as well as in electronic tags for food monitoring, serving public health and providing at the same time a very powerful tool against counterfeiting. These systems will be unperceivable and mass produced mainly with mask-less, printing and direct-writing methods. Besides being completely safe for ingestion, such devices will also be perceived as food, favouring public acceptance. Such an ambitious plan will be implemented by: i) creating knowledge on electronic properties of food and food derivatives and complementing them with edible solution-processable, mainly carbon-based semiconductors, thus developing an extended library of edible electronic materials; ii) developing large-area, solution-based, printing and direct-writing scalable processes with high lateral resolution for the precise patterning of edible functional materials; iii) developing edible electronic components required in systems, from logic to power and sensors; iv) validating the progress with two proof-of-concept systems, an edible radio-frequency pill with controlled drug delivery, answering the need for compliance monitoring devices and actuators within the gut, and an edible passive food Radio-Frequency identification tag, answering the need for certification and anti-counterfeiting devices directly onto or into food products. ELFO will give solid engineering grounds to the visionary perspectives of edible electronics, introducing imperceptible intelligence in any edible item, thus accessing more information on what we eat, how it is assimilated and enabling biomedical devices for mass health screening.
Summary
ELFO will provide the foundations of a new enabling technology for disruptive edible electronic systems, with applications in advanced biomedical devices for continuous monitoring of the health status within the gastro-intestinal (GI) tract, as well as in electronic tags for food monitoring, serving public health and providing at the same time a very powerful tool against counterfeiting. These systems will be unperceivable and mass produced mainly with mask-less, printing and direct-writing methods. Besides being completely safe for ingestion, such devices will also be perceived as food, favouring public acceptance. Such an ambitious plan will be implemented by: i) creating knowledge on electronic properties of food and food derivatives and complementing them with edible solution-processable, mainly carbon-based semiconductors, thus developing an extended library of edible electronic materials; ii) developing large-area, solution-based, printing and direct-writing scalable processes with high lateral resolution for the precise patterning of edible functional materials; iii) developing edible electronic components required in systems, from logic to power and sensors; iv) validating the progress with two proof-of-concept systems, an edible radio-frequency pill with controlled drug delivery, answering the need for compliance monitoring devices and actuators within the gut, and an edible passive food Radio-Frequency identification tag, answering the need for certification and anti-counterfeiting devices directly onto or into food products. ELFO will give solid engineering grounds to the visionary perspectives of edible electronics, introducing imperceptible intelligence in any edible item, thus accessing more information on what we eat, how it is assimilated and enabling biomedical devices for mass health screening.
Max ERC Funding
1 980 000 €
Duration
Start date: 2020-09-01, End date: 2025-08-31
Project acronym Ergo-Lean
Project Rethinking Human Ergonomics in Lean Manufacturing and Service Industry: Towards Adaptive Robots with Anticipatory Behaviors
Researcher (PI) Arash Ajoudani
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Country Italy
Call Details Starting Grant (StG), PE7, ERC-2019-STG
Summary Occupational ergonomics is facing a new complex challenge caused by the adaptation of industrial processes to the demands of the high-mix, low-volume production. In such processes, humans operate in, and interact with dynamically changing environments. The underlying physical interactions can cause variations of human states, and make a traditionally identified ergonomic pose of a human non-efficient and unproductive, or vice versa. This challenge has contributed to the growth of musculoskeletal disorders in manufacturing and service industries undergoing a lean transformation, and calls for new thinking on occupational ergonomics.
Ergo-Lean proposes to study, for the first time, human ergonomics during complex human-robot-environment interactions, and investigate methods to anticipate the effect of worker actions in the short, middle and long term. It explores the potential of collaborative robotics technology to deliver an original set of anticipatory behaviors that contribute to the improvement of human physical factors during interaction. Ergo-Lean will create radically new Human-Robot Collaboration (HRC) systems where the robot and human directly interact, forming a dyad which optimally solves manufacturing problems in the environment, with the robot flexibly contributing to ergonomic improvement of workplace conditions. To achieve this, the research will be articulated along five multidisciplinary scientific objectives to: i) Understand and formulate human ergonomics during dynamic interactions; ii) Investigate ways of applying the HRC technology to the mitigation of occupational risks; iii) Evaluate the influence of feedback interfaces for ergonomic coordination of motor redundancy; iv) Study shared authority models for ergonomic HRC systems; and v) Challenge and demonstrate the improved adaptability and acceptability of Ergo-Lean systems. Ergo-Lean will have profound socio-economic impacts by improving workers’ wellbeing and contributing to productivity.
Summary
Occupational ergonomics is facing a new complex challenge caused by the adaptation of industrial processes to the demands of the high-mix, low-volume production. In such processes, humans operate in, and interact with dynamically changing environments. The underlying physical interactions can cause variations of human states, and make a traditionally identified ergonomic pose of a human non-efficient and unproductive, or vice versa. This challenge has contributed to the growth of musculoskeletal disorders in manufacturing and service industries undergoing a lean transformation, and calls for new thinking on occupational ergonomics.
Ergo-Lean proposes to study, for the first time, human ergonomics during complex human-robot-environment interactions, and investigate methods to anticipate the effect of worker actions in the short, middle and long term. It explores the potential of collaborative robotics technology to deliver an original set of anticipatory behaviors that contribute to the improvement of human physical factors during interaction. Ergo-Lean will create radically new Human-Robot Collaboration (HRC) systems where the robot and human directly interact, forming a dyad which optimally solves manufacturing problems in the environment, with the robot flexibly contributing to ergonomic improvement of workplace conditions. To achieve this, the research will be articulated along five multidisciplinary scientific objectives to: i) Understand and formulate human ergonomics during dynamic interactions; ii) Investigate ways of applying the HRC technology to the mitigation of occupational risks; iii) Evaluate the influence of feedback interfaces for ergonomic coordination of motor redundancy; iv) Study shared authority models for ergonomic HRC systems; and v) Challenge and demonstrate the improved adaptability and acceptability of Ergo-Lean systems. Ergo-Lean will have profound socio-economic impacts by improving workers’ wellbeing and contributing to productivity.
Max ERC Funding
1 488 750 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym EXTREMA
Project Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in Autonomy
Researcher (PI) Francesco TOPPUTO
Host Institution (HI) POLITECNICO DI MILANO
Country Italy
Call Details Consolidator Grant (CoG), PE8, ERC-2019-COG
Summary A new space era is fast approaching. A multitude of miniaturised probes will soon permeate the inner solar system. The abundantly variegated minor bodies will be the destinations of numerous missions driven by exploration and exploitation needs. Missions to rocky planets will feature networks of artificial satellites to support science and operations. Yet, the state-of-the-art is to pilot deep-space probes from ground. Although this is reliable, ground control slots will saturate soon, thus hampering the current momentum in space exploration.
EXTREMA enables self-driving spacecraft: machines able to travel in the deep space free of human-driven instructions. We take the challenge to make these systems a reality, and fundamental research is conducted to lay down their foundations. The ambition of EXTREMA is to prove that minor bodies and inner planets can be reached in a totally autonomous fashion with highly constrained platforms. These systems are used to engineer ballistic capture, an extremely rare event observed in highly sensitive regimes. To reinforce this logic, a new approach in orbit validation is introduced, which excels pure computer simulations.
Erected over three pillars, the project forges a Simulation Hub, which reproduces on ground the spacecraft-environment interaction. While the pillars enable intermediate milestones, such as inferring the spacecraft position by exploiting the surrounding environment (autonomous navigation), self-determining a nominal plan without a-priori knowledge (autonomous guidance), and targeting the corridors that conduce to ballistic capture, it is the activity performed in the Simulation Hub that allows achieving the objectives via dedicated case studies.
A successful outcome will boost access to outer space. The impact is to favour settlements in the inner solar system on a large-scale basis. Located at the fringe of research, EXTREMA can determine a paradigm shift in the way we conceive and conduct deep-space mission.
Summary
A new space era is fast approaching. A multitude of miniaturised probes will soon permeate the inner solar system. The abundantly variegated minor bodies will be the destinations of numerous missions driven by exploration and exploitation needs. Missions to rocky planets will feature networks of artificial satellites to support science and operations. Yet, the state-of-the-art is to pilot deep-space probes from ground. Although this is reliable, ground control slots will saturate soon, thus hampering the current momentum in space exploration.
EXTREMA enables self-driving spacecraft: machines able to travel in the deep space free of human-driven instructions. We take the challenge to make these systems a reality, and fundamental research is conducted to lay down their foundations. The ambition of EXTREMA is to prove that minor bodies and inner planets can be reached in a totally autonomous fashion with highly constrained platforms. These systems are used to engineer ballistic capture, an extremely rare event observed in highly sensitive regimes. To reinforce this logic, a new approach in orbit validation is introduced, which excels pure computer simulations.
Erected over three pillars, the project forges a Simulation Hub, which reproduces on ground the spacecraft-environment interaction. While the pillars enable intermediate milestones, such as inferring the spacecraft position by exploiting the surrounding environment (autonomous navigation), self-determining a nominal plan without a-priori knowledge (autonomous guidance), and targeting the corridors that conduce to ballistic capture, it is the activity performed in the Simulation Hub that allows achieving the objectives via dedicated case studies.
A successful outcome will boost access to outer space. The impact is to favour settlements in the inner solar system on a large-scale basis. Located at the fringe of research, EXTREMA can determine a paradigm shift in the way we conceive and conduct deep-space mission.
Max ERC Funding
1 972 837 €
Duration
Start date: 2021-01-01, End date: 2025-12-31
Project acronym InflaPML
Project Promyelocytic leukemia protein (PML) outside the tumor: a new player in the control of inflammation
Researcher (PI) Carlotta GIORGI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FERRARA
Country Italy
Call Details Starting Grant (StG), LS4, ERC-2019-STG
Summary Local sterile inflammation arise in many pathologic states, including several diseases of the nervous system as brain stroke, neurodegenerative diseases and epilepsy. The persistent and de-regulated inflammatory response sustains these neurological pathologies worsening their prognosis. Different molecular players, as NLRP3 and P2X7 have been shown to contribute to the progression of these illnesses triggering the release of IL-1β and recruiting cellular components of the immune response at the neurodegeneration site. Consistently, brain penetrant P2X7 antagonists are clinically used to treat epilepsy and neurodegenerative diseases, while the pharmacological modulation of IL-1β is still unsuccessful. Unfortunately, the molecular mechanism underlying neuroinflammation and NLRP3 inflammasome assembly remains elusive. Here we propose that different neuroinflammatory diseases can be linked together in a common disease pathway, of which damaged function should be targeted for therapy. Specifically we propose a new mechanism acting on IL-1β regulation: we hypothesize the existence of a new activity of PML outside tumour environment, acting at the endoplasmic reticulum-mitochondria interfaces (MAMs) as modulator of NLRP3 inflammasome. On these bases, I propose a project in which PML activity at MAMs can be the key link of different neuroinflammatory diseases. Our goals are as follow: 1) to demonstrate that PML post-transcriptionally controls NLRP3 activity at the ER/MAMs compartments and thus IL-1β release via P2X7; 2) to prove that IL-1β release have a strong influence on neuronal environment and survival, and might represent a prognostic factor; 3) to develop new drugs targeting PML/NLRP3/P2X7 axis to overcome the unexpected failure of anti-IL-1 therapies.
Summary
Local sterile inflammation arise in many pathologic states, including several diseases of the nervous system as brain stroke, neurodegenerative diseases and epilepsy. The persistent and de-regulated inflammatory response sustains these neurological pathologies worsening their prognosis. Different molecular players, as NLRP3 and P2X7 have been shown to contribute to the progression of these illnesses triggering the release of IL-1β and recruiting cellular components of the immune response at the neurodegeneration site. Consistently, brain penetrant P2X7 antagonists are clinically used to treat epilepsy and neurodegenerative diseases, while the pharmacological modulation of IL-1β is still unsuccessful. Unfortunately, the molecular mechanism underlying neuroinflammation and NLRP3 inflammasome assembly remains elusive. Here we propose that different neuroinflammatory diseases can be linked together in a common disease pathway, of which damaged function should be targeted for therapy. Specifically we propose a new mechanism acting on IL-1β regulation: we hypothesize the existence of a new activity of PML outside tumour environment, acting at the endoplasmic reticulum-mitochondria interfaces (MAMs) as modulator of NLRP3 inflammasome. On these bases, I propose a project in which PML activity at MAMs can be the key link of different neuroinflammatory diseases. Our goals are as follow: 1) to demonstrate that PML post-transcriptionally controls NLRP3 activity at the ER/MAMs compartments and thus IL-1β release via P2X7; 2) to prove that IL-1β release have a strong influence on neuronal environment and survival, and might represent a prognostic factor; 3) to develop new drugs targeting PML/NLRP3/P2X7 axis to overcome the unexpected failure of anti-IL-1 therapies.
Max ERC Funding
1 462 500 €
Duration
Start date: 2020-06-01, End date: 2025-05-31
Project acronym MAGIC
Project Architectured Soft Magnetoactive Materials: Beyond Instabilities
Researcher (PI) Stephan RUDYKH
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRENTO
Country Italy
Call Details Starting Grant (StG), PE8, ERC-2019-STG
Summary Soft magnetoactive materials can change their properties and undergo extremely large deformations when excited by magnetic stimuli. These reconfigurable soft materials hold great potential for a large variety of applications from sensing devices to energy harvesting, noise and vibration mitigation, and soft robotics. However, these materials operate at high magnetic fields, thus, limiting potential application of the technology. A promising approach to significantly enhance the magnetomechanical performance, and reduce the required magnetic field, is to design soft magnetoactive composites through architectured microstructures. Highly ordered microstructures are an origin for multiscale magnetomechanical instabilities and possible failure of the materials. In this research proposal, we directly address this crucial aspect for MAE-based technology. Moreover, we declare an ambitious goal: Turning failure into functionalities.
Our strategy is to take the risk of operating MAEs in the unstable regime with predesigned instability developments. This novel MAE design concept will capitalize on controllable cascade microstructure transformations while attempting to avoid catastrophic failure. If successful, this concept will open a new avenue in design of morphing magnetoactive materials with new functionalities and superior performance. To achieve this ambitious goal, we will develop multiscale theoretical and computational frameworks to reveal and to predict the behavior of possible advantageous microstructures in the extreme regimes. If successful, we will fill the gap in magnetomechanical multiscale instability phenomena, and will significantly advance the frontier of knowledge about the reconfigurable soft matter. We will probe our ideas experimentally, and will fabricate the revealed advantageous materials with engineered microstructures and properties. We envision revealing the fundamental multiphysics mechanisms of the multiscale magnetomechanical instabilities.
Summary
Soft magnetoactive materials can change their properties and undergo extremely large deformations when excited by magnetic stimuli. These reconfigurable soft materials hold great potential for a large variety of applications from sensing devices to energy harvesting, noise and vibration mitigation, and soft robotics. However, these materials operate at high magnetic fields, thus, limiting potential application of the technology. A promising approach to significantly enhance the magnetomechanical performance, and reduce the required magnetic field, is to design soft magnetoactive composites through architectured microstructures. Highly ordered microstructures are an origin for multiscale magnetomechanical instabilities and possible failure of the materials. In this research proposal, we directly address this crucial aspect for MAE-based technology. Moreover, we declare an ambitious goal: Turning failure into functionalities.
Our strategy is to take the risk of operating MAEs in the unstable regime with predesigned instability developments. This novel MAE design concept will capitalize on controllable cascade microstructure transformations while attempting to avoid catastrophic failure. If successful, this concept will open a new avenue in design of morphing magnetoactive materials with new functionalities and superior performance. To achieve this ambitious goal, we will develop multiscale theoretical and computational frameworks to reveal and to predict the behavior of possible advantageous microstructures in the extreme regimes. If successful, we will fill the gap in magnetomechanical multiscale instability phenomena, and will significantly advance the frontier of knowledge about the reconfigurable soft matter. We will probe our ideas experimentally, and will fabricate the revealed advantageous materials with engineered microstructures and properties. We envision revealing the fundamental multiphysics mechanisms of the multiscale magnetomechanical instabilities.
Max ERC Funding
1 999 085 €
Duration
Start date: 2020-03-01, End date: 2025-02-28
Project acronym NANOLED
Project Toward single colloidal nanocrystal light-emitting diodes
Researcher (PI) Francesco DI STASIO
Host Institution (HI) FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
Country Italy
Call Details Starting Grant (StG), PE8, ERC-2019-STG
Summary Nanomaterials are a promising technology that includes a variety of applications ranging from electronics to medicine. Within the family of nanomaterials, colloidal semiconductor nanocrystal (NCs) are among the most investigated, thanks to their desirable optoelectronic properties.
Up until now, NCs have been employed in light-emitting diodes (LEDs) and lasers of relatively large size (devices of at least few hundred microns in area), therefore exploiting the properties of the ensemble (i.e., a NC film). LEDs based on ensemble of NCs show good performance in terms of efficiency and luminance but their applicability is still limited to standard consumer electronics products such as displays and illumination. Interestingly, thanks to quantum confinement a single isolated NC displays single photon emission, a desirable property for application in quantum technologies. Such property has been studied in detail using optical excitation. Yet, the challenge is to exploit single photon emission from a NC under electrical excitation but this requires the development of complex fabrication tools and methods for device preparation.
NANOLED aims at developing light-emitting diodes based on individual colloidal NCs, thus paving the way to novel electrically driven single-photon sources with small footprint that are embeddable in photonic quantum networks. Further development of quantum technologies requires the investigation of devices based on novel materials for single photon generation.
The project identifies 3 objectives to reach the final goal of fabricating a light-emitting diode based on a single nanocrystal: i) Identification and synthesis of semiconductor NCs with the necessary properties. ii) Development of methods for precise spatial positioning of a single semiconductor NC within electrodes able to inject a current into it; iii) Study of the electroluminescence of a single NC and investigation of its applicability toward single-photon and classical light sources.
Summary
Nanomaterials are a promising technology that includes a variety of applications ranging from electronics to medicine. Within the family of nanomaterials, colloidal semiconductor nanocrystal (NCs) are among the most investigated, thanks to their desirable optoelectronic properties.
Up until now, NCs have been employed in light-emitting diodes (LEDs) and lasers of relatively large size (devices of at least few hundred microns in area), therefore exploiting the properties of the ensemble (i.e., a NC film). LEDs based on ensemble of NCs show good performance in terms of efficiency and luminance but their applicability is still limited to standard consumer electronics products such as displays and illumination. Interestingly, thanks to quantum confinement a single isolated NC displays single photon emission, a desirable property for application in quantum technologies. Such property has been studied in detail using optical excitation. Yet, the challenge is to exploit single photon emission from a NC under electrical excitation but this requires the development of complex fabrication tools and methods for device preparation.
NANOLED aims at developing light-emitting diodes based on individual colloidal NCs, thus paving the way to novel electrically driven single-photon sources with small footprint that are embeddable in photonic quantum networks. Further development of quantum technologies requires the investigation of devices based on novel materials for single photon generation.
The project identifies 3 objectives to reach the final goal of fabricating a light-emitting diode based on a single nanocrystal: i) Identification and synthesis of semiconductor NCs with the necessary properties. ii) Development of methods for precise spatial positioning of a single semiconductor NC within electrodes able to inject a current into it; iii) Study of the electroluminescence of a single NC and investigation of its applicability toward single-photon and classical light sources.
Max ERC Funding
1 496 250 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym NP-QFT
Project Non-perturbative dynamics of quantum fields: from new deconfined phases of matter to quantum black holes
Researcher (PI) Francesco Benini
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2019-COG
Summary When the degrees of freedom that constitute a quantum physical system are strongly coupled among each other, their collective low-energy behaviour can exhibit a plethora of exotic, surprising and unconventional phenomena. At the same time, however, our most sophisticated tool to describe the quantum world - quantum field theory - becomes extremely difficult to use. This problem appears across the board in many areas, from particle physics, to condensed matter physics, to astrophysics: strong coupling is an intrinsic complexity of quantum systems, whose solution can benefit disparate fields. A large variety of examples is provided by deconfined quantum states of matter, in which the collective behaviour gives rise to emergent low-energy degrees of freedom, often strongly coupled. Another context in which decrypting strong coupling can be the key to a breakthrough is quantum gravity: by the celebrated AdS/CFT correspondence, we can describe gravity in Anti-de-Sitter space in a fully-consistent quantum fashion, in terms of an ordinary - but strongly coupled - quantum field theory in one dimension less.
The ambitious goal of this project is twofold: first, to develop innovative techniques to tame strong coupling; second, to exploit those techniques to discover new deconfined phases of matter on one side, and to unravel mysteries of quantum gravity and the quantum physics of black holes on the other side.
I will follow several avenues in the quest for new computational tools at strong coupling, such as refining the concept of symmetry, developing supersymmetric localization, probing Borel summability of certain gauge theories. Applying these and other methods, I will systematically explore three-dimensional gauge theories with bosons and fermions, landscaping their phase diagrams and deconfined critical points. Meanwhile, I will extract the quantum entropy and other properties of black holes, exploring signatures of quantum effects to be compared with future experiments.
Summary
When the degrees of freedom that constitute a quantum physical system are strongly coupled among each other, their collective low-energy behaviour can exhibit a plethora of exotic, surprising and unconventional phenomena. At the same time, however, our most sophisticated tool to describe the quantum world - quantum field theory - becomes extremely difficult to use. This problem appears across the board in many areas, from particle physics, to condensed matter physics, to astrophysics: strong coupling is an intrinsic complexity of quantum systems, whose solution can benefit disparate fields. A large variety of examples is provided by deconfined quantum states of matter, in which the collective behaviour gives rise to emergent low-energy degrees of freedom, often strongly coupled. Another context in which decrypting strong coupling can be the key to a breakthrough is quantum gravity: by the celebrated AdS/CFT correspondence, we can describe gravity in Anti-de-Sitter space in a fully-consistent quantum fashion, in terms of an ordinary - but strongly coupled - quantum field theory in one dimension less.
The ambitious goal of this project is twofold: first, to develop innovative techniques to tame strong coupling; second, to exploit those techniques to discover new deconfined phases of matter on one side, and to unravel mysteries of quantum gravity and the quantum physics of black holes on the other side.
I will follow several avenues in the quest for new computational tools at strong coupling, such as refining the concept of symmetry, developing supersymmetric localization, probing Borel summability of certain gauge theories. Applying these and other methods, I will systematically explore three-dimensional gauge theories with bosons and fermions, landscaping their phase diagrams and deconfined critical points. Meanwhile, I will extract the quantum entropy and other properties of black holes, exploring signatures of quantum effects to be compared with future experiments.
Max ERC Funding
1 552 458 €
Duration
Start date: 2020-10-01, End date: 2025-09-30