Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AMETIST
Project Advanced III-V Materials and Processes Enabling Ultrahigh-efficiency ( 50%) Photovoltaics
Researcher (PI) Mircea Dorel GUINA
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2015-AdG
Summary Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Summary
Compound semiconductor solar cells are providing the highest photovoltaic conversion efficiency, yet their performance lacks far behind the theoretical potential. This is a position we will challenge by engineering advanced III-V optoelectronics materials and heterostructures for better utilization of the solar spectrum, enabling efficiencies approaching practical limits. The work is strongly motivated by the global need for renewable energy sources. To this end, AMETIST framework is based on three vectors of excellence in: i) material science and epitaxial processes, ii) advanced solar cells exploiting nanophotonics concepts, and iii) new device fabrication technologies.
Novel heterostructures (e.g. GaInNAsSb, GaNAsBi), providing absorption in a broad spectral range from 0.7 eV to 1.4 eV, will be synthesized and monolithically integrated in tandem cells with up to 8-junctions. Nanophotonic methods for light-trapping, spectral and spatial control of solar radiation will be developed to further enhance the absorption. To ensure a high long-term impact, the project will validate the use of state-of-the-art molecular-beam-epitaxy processes for fabrication of economically viable ultra-high efficiency solar cells. The ultimate efficiency target is to reach a level of 55%. This would enable to generate renewable/ecological/sustainable energy at a levelized production cost below ~7 ¢/kWh, comparable or cheaper than fossil fuels. The work will also bring a new breath of developments for more efficient space photovoltaic systems.
AMETIST will leverage the leading position of the applicant in topical technology areas relevant for the project (i.e. epitaxy of III-N/Bi-V alloys and key achievements concerning GaInNAsSb-based tandem solar cells). Thus it renders a unique opportunity to capitalize on the group expertize and position Europe at the forefront in the global competition for demonstrating more efficient and economically viable photovoltaic technologies.
Max ERC Funding
2 492 719 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ATOP
Project Atomically-engineered nonlinear photonics with two-dimensional layered material superlattices
Researcher (PI) zhipei SUN
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Summary
The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Max ERC Funding
2 442 448 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BioELCell
Project Bioproducts Engineered from Lignocelluloses: from plants and upcycling to next generation materials
Researcher (PI) Orlando Rojas Gaona
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Summary
BioELCell will deliver ground-breaking approaches to create next material generation based on renewable resources, mainly cellulose and lignin micro- and nano-particles (MNC, MNL). Our action will disassemble and re-engineer these plant-based polymers into functional materials that will respond to the demands of the bioeconomy of the future, critically important to Europe and the world. My ambitious, high gain research plan is underpinned in the use of multiphase systems with ultra-low interfacial tension to facilitate nanocellulose liberation and atomization of lignin solution streams into spherical particles.
BioELCell will design novel routes to control MNC and MNL reassembly in new 1-D, 2-D and 3-D structures. The systematic methodologies that I propose will address the main challenges for lignocellulose processing and deployment, considering the important effects of interactions with water. This BioELCell action presents a transformative approach by integrating complementary disciplines that will lead to a far-reaching understanding of lignocellulosic biopolymers and solve key challenges in their use, paving the way to functional product development. Results of this project permeates directly or indirectly in the grand challenges for engineering, namely, water use, carbon sequestration, nitrogen cycle, food and advanced materials. Indeed, after addressing the key fundamental elements of the research lines, BioELCell vindicates such effects based on rational use of plant-based materials as a sustainable resource, making possible the generation of new functions and advanced materials.
BioELCell goes far beyond what is known today about cellulose and lignin micro and nano-particles, some of the most promising materials of our century, which are emerging as key elements for the success of a sustainable society.
Max ERC Funding
2 486 182 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym BTVI
Project First Biodegradable Biocatalytic VascularTherapeutic Implants
Researcher (PI) Alexander Zelikin
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), PE8, ERC-2013-CoG
Summary "We aim to perform academic development of a novel biomedical opportunity: localized synthesis of drugs within biocatalytic therapeutic vascular implants (BVI) for site-specific drug delivery to target organs and tissues. Primary envisioned targets for therapeutic intervention using BVI are atherosclerosis, viral hepatitis, and hepatocellular carcinoma: three of the most prevalent and debilitating conditions which affect hundreds of millions worldwide and which continue to increase in their importance in the era of increasingly aging population. For hepatic applications, we aim to develop drug eluting beads which are equipped with tools of enzyme-prodrug therapy (EPT) and are administered to the liver via trans-arterial catheter embolization. Therein, the beads perform localized synthesis of drugs and imaging reagents for anticancer combination therapy and theranostics, antiviral and anti-inflammatory agents for the treatment of hepatitis. Further, we conceive vascular therapeutic inserts (VTI) as a novel type of implantable biomaterials for treatment of atherosclerosis and re-endothelialization of vascular stents and grafts. Using EPT, inserts will tame “the guardian of cardiovascular grafts”, nitric oxide, for which localized, site specific synthesis and delivery spell success of therapeutic intervention and/or aided tissue regeneration. This proposal is positioned on the forefront of biomedical engineering and its success requires excellence in polymer chemistry, materials design, medicinal chemistry, and translational medicine. Each part of this proposal - design of novel types of vascular implants, engineering novel biomaterials, developing innovative fabrication and characterization techniques – is of high value for fundamental biomedical sciences. The project is target-oriented and once successful, will be of highest practical value and contribute to increased quality of life of millions of people worldwide."
Summary
"We aim to perform academic development of a novel biomedical opportunity: localized synthesis of drugs within biocatalytic therapeutic vascular implants (BVI) for site-specific drug delivery to target organs and tissues. Primary envisioned targets for therapeutic intervention using BVI are atherosclerosis, viral hepatitis, and hepatocellular carcinoma: three of the most prevalent and debilitating conditions which affect hundreds of millions worldwide and which continue to increase in their importance in the era of increasingly aging population. For hepatic applications, we aim to develop drug eluting beads which are equipped with tools of enzyme-prodrug therapy (EPT) and are administered to the liver via trans-arterial catheter embolization. Therein, the beads perform localized synthesis of drugs and imaging reagents for anticancer combination therapy and theranostics, antiviral and anti-inflammatory agents for the treatment of hepatitis. Further, we conceive vascular therapeutic inserts (VTI) as a novel type of implantable biomaterials for treatment of atherosclerosis and re-endothelialization of vascular stents and grafts. Using EPT, inserts will tame “the guardian of cardiovascular grafts”, nitric oxide, for which localized, site specific synthesis and delivery spell success of therapeutic intervention and/or aided tissue regeneration. This proposal is positioned on the forefront of biomedical engineering and its success requires excellence in polymer chemistry, materials design, medicinal chemistry, and translational medicine. Each part of this proposal - design of novel types of vascular implants, engineering novel biomaterials, developing innovative fabrication and characterization techniques – is of high value for fundamental biomedical sciences. The project is target-oriented and once successful, will be of highest practical value and contribute to increased quality of life of millions of people worldwide."
Max ERC Funding
1 996 126 €
Duration
Start date: 2014-04-01, End date: 2019-09-30
Project acronym CALLIOPE
Project voCAL articuLations Of Parliamentary Identity and Empire
Researcher (PI) Josephine HOEGAERTS
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), SH5, ERC-2017-STG
Summary What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Summary
What did politicians sound like before they were on the radio and television? The fascination with politicians’ vocal characteristics and quirks is often connected to the rise of audio-visual media. But in the age of the printed press, political representatives also had to ‘speak well’ – without recourse to amplification.
Historians and linguists have provided sophisticated understandings of the discursive and aesthetic aspects of politicians’ language, but have largely ignored the importance of the acoustic character of their speech. CALLIOPE studies how vocal performances in parliament have influenced the course of political careers and political decision making in the 19th century. It shows how politicians’ voices helped to define the diverse identities they articulated. In viewing parliament through the lens of audibility, the project offers a new perspective on political representation by reframing how authority was embodied (through performances that were heard, rather than seen). It does so for the Second Chamber in Britain and France, and in dialogue with ‘colonial’ modes of speech in Kolkata and Algiers, which, we argue, exerted considerable influence on European vocal culture.
The project devises an innovative methodological approach to include the sound of the human voice in studies of the past that precede acoustic recording. Adapting methods developed in sound studies and combining them with the tools of political history, the project proposes a new way to analyse parliamentary reporting, while also drawing on a variety of sources that are rarely connected to the history of politics.
The main source material for the study comprise transcripts of parliamentary speech (official reports and renditions by journalists). However, the project also mobilizes educational, satirical and fictional sources to elucidate the convoluted processes that led to the cultivation, exertion, reception and evaluation of a voice ‘fit’ for nineteenth-century politics.
Max ERC Funding
1 499 905 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CLIC
Project Classical Influences and Irish Culture
Researcher (PI) Isabelle Torrance
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), SH5, ERC-2018-COG
Summary The hypothesis of this project is that Ireland has a unique and hitherto underexplored history of cultural engagement with models from ancient Greece and Rome. Unlike Britain and mainland Europe, Ireland was never part of the Roman Empire. Yet the island has an extraordinarily vibrant tradition of classical learning that dates back to its earliest recorded literature, and is unparalleled in other northern European countries. Research for this project will address why this is the case, by examining sources through nine significant diachronic themes identified by the PI: language; land; travel and exile; Troy; satire; Neoplatonism; female voices; material culture; and global influence. This multi-thematic approach will enable analysis of what is remarkable about classical reception in Ireland. It will also provide a heuristic framework that generates dialogue between normally disparate fields, such as classical reception studies, Irish and British history, English-language literature, Irish-language literature, medieval studies, postcolonial studies, philosophy, material culture, women's studies, and global studies. The project will engage with contemporary preoccupations surrounding the politics and history of the divided island of Ireland, such as the current decade of centenary commemorations for the foundation of an independent Irish state (1912-1922, 2012-2022), and the on-going violence and political divisions in Northern Ireland. These issues will serve as a springboard for opening new avenues of investigation that look far beyond the past 100 years, but are linked to them. The project will thus shed new light on the role of classical culture in shaping literary, social, and political discourse across the island of Ireland, and throughout its history.
Summary
The hypothesis of this project is that Ireland has a unique and hitherto underexplored history of cultural engagement with models from ancient Greece and Rome. Unlike Britain and mainland Europe, Ireland was never part of the Roman Empire. Yet the island has an extraordinarily vibrant tradition of classical learning that dates back to its earliest recorded literature, and is unparalleled in other northern European countries. Research for this project will address why this is the case, by examining sources through nine significant diachronic themes identified by the PI: language; land; travel and exile; Troy; satire; Neoplatonism; female voices; material culture; and global influence. This multi-thematic approach will enable analysis of what is remarkable about classical reception in Ireland. It will also provide a heuristic framework that generates dialogue between normally disparate fields, such as classical reception studies, Irish and British history, English-language literature, Irish-language literature, medieval studies, postcolonial studies, philosophy, material culture, women's studies, and global studies. The project will engage with contemporary preoccupations surrounding the politics and history of the divided island of Ireland, such as the current decade of centenary commemorations for the foundation of an independent Irish state (1912-1922, 2012-2022), and the on-going violence and political divisions in Northern Ireland. These issues will serve as a springboard for opening new avenues of investigation that look far beyond the past 100 years, but are linked to them. The project will thus shed new light on the role of classical culture in shaping literary, social, and political discourse across the island of Ireland, and throughout its history.
Max ERC Funding
1 888 592 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym COSMOS
Project Computational Simulations of MOFs for Gas Separations
Researcher (PI) Seda Keskin Avci
Host Institution (HI) KOC UNIVERSITY
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Summary
Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CROSSLOCATIONS
Project Crosslocations in the Mediterranean: rethinking the socio-cultural dynamics of relative positioning
Researcher (PI) Sarah Francesca Green
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Advanced Grant (AdG), SH5, ERC-2015-AdG
Summary The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Summary
The Mediterranean, a key socio-cultural, economic and political crossroads, has shifted its relative position recently, with profound effects for relations between the peoples associated with its diverse parts. Crosslocations is a groundbreaking theoretical approach that goes beyond current borders research to analyse the significance of the changes in relations between places and peoples that this involves. It does this through explaining shifts in the relative positioning of the Mediterranean’s many locations – i.e. the changing values of where people are rather than who they are. Approaches focusing on people’s identities, statecraft or networks do not provide a way to research how the relative value of ‘being somewhere in particular’ is changing and diversifying.
The approach builds on the idea that in socio-cultural terms, location is a form of political, social, economic, and technical relative positioning, involving diverse scales that calibrate relative values (here called ‘locating regimes’). This means locations are both multiple and historically variable, so different types of location may overlap in the same geographical space, particularly in crossroads regions such as the Mediterranean. The dynamics between them alter relations between places, significantly affecting people’s daily lives, including their life chances, wellbeing, environmental, social and political conditions and status.
The project will first research the locating regimes crossing the Mediterranean region (border regimes, infrastructures; digital technologies; fiscal, financial and trading systems; environmental policies; and social and religious structures); then intensively ethnographically study the socio-cultural dynamics of relative positioning that these regimes generate in selected parts of the Mediterranean region. Through explaining the dynamics of relative location, Crosslocations will transform our understanding of trans-local, socio-cultural relations and separations.
Max ERC Funding
2 433 234 €
Duration
Start date: 2016-09-01, End date: 2021-08-31