Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym AMADEUS
Project Advancing CO2 Capture Materials by Atomic Scale Design: the Quest for Understanding
Researcher (PI) Christoph Rüdiger MÜLLER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Carbon dioxide capture and storage is a technology to mitigate climate change by removing CO2 from flue gas streams or the atmosphere and storing it in geological formations. While CO2 removal from natural gas by amine scrubbing is implemented on the large scale, the cost of such process is currently prohibitively expensive. Inexpensive alkali earth metal oxides (MgO and CaO) feature high theoretical CO2 uptakes, but suffer from poor cyclic stability and slow kinetics. Yet, the key objective of recent research on alkali earth metal oxide based CO2 sorbents has been the processing of inexpensive, naturally occurring CO2 sorbents, notably limestone and dolomite, to stabilize their modest CO2 uptake and to establish re-activation methods through engineering approaches. While this research demonstrated a landmark Megawatt (MW) scale viability of the process, our fundamental understanding of the underlying CO2 capture, regeneration and deactivation pathways did not improve. The latter knowledge is, however, vital for the rational design of improved, yet practical CaO and MgO sorbents. Hence this proposal is concerned with obtaining an understanding of the underlying mechanisms that control the ability of an alkali metal oxide to capture a large quantity of CO2 with a high rate, to regenerate and to operate with high cyclic stability. Achieving these aims relies on the ability to fabricate model structures and to characterize in great detail their surface chemistry, morphology, chemical composition and changes therein under reactive conditions. This makes the development of operando and in situ characterization tools an essential prerequisite. Advances in these areas shall allow achieving the overall goal of this project, viz. to formulate a roadmap to fabricate improved CO2 sorbents through their precisely engineered structure, composition and morphology.
Summary
Carbon dioxide capture and storage is a technology to mitigate climate change by removing CO2 from flue gas streams or the atmosphere and storing it in geological formations. While CO2 removal from natural gas by amine scrubbing is implemented on the large scale, the cost of such process is currently prohibitively expensive. Inexpensive alkali earth metal oxides (MgO and CaO) feature high theoretical CO2 uptakes, but suffer from poor cyclic stability and slow kinetics. Yet, the key objective of recent research on alkali earth metal oxide based CO2 sorbents has been the processing of inexpensive, naturally occurring CO2 sorbents, notably limestone and dolomite, to stabilize their modest CO2 uptake and to establish re-activation methods through engineering approaches. While this research demonstrated a landmark Megawatt (MW) scale viability of the process, our fundamental understanding of the underlying CO2 capture, regeneration and deactivation pathways did not improve. The latter knowledge is, however, vital for the rational design of improved, yet practical CaO and MgO sorbents. Hence this proposal is concerned with obtaining an understanding of the underlying mechanisms that control the ability of an alkali metal oxide to capture a large quantity of CO2 with a high rate, to regenerate and to operate with high cyclic stability. Achieving these aims relies on the ability to fabricate model structures and to characterize in great detail their surface chemistry, morphology, chemical composition and changes therein under reactive conditions. This makes the development of operando and in situ characterization tools an essential prerequisite. Advances in these areas shall allow achieving the overall goal of this project, viz. to formulate a roadmap to fabricate improved CO2 sorbents through their precisely engineered structure, composition and morphology.
Max ERC Funding
1 994 900 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym ANTHROPOID
Project Great ape organoids to reconstruct uniquely human development
Researcher (PI) Jarrett CAMP
Host Institution (HI) INSTITUT FUR MOLEKULARE UND KLINISCHE OPHTHALMOLOGIE BASEL
Call Details Starting Grant (StG), LS2, ERC-2018-STG
Summary Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Summary
Humans diverged from our closest living relatives, chimpanzees and other great apes, 6-10 million years ago. Since this divergence, our ancestors acquired genetic changes that enhanced cognition, altered metabolism, and endowed our species with an adaptive capacity to colonize the entire planet and reshape the biosphere. Through genome comparisons between modern humans, Neandertals, chimpanzees and other apes we have identified genetic changes that likely contribute to innovations in human metabolic and cognitive physiology. However, it has been difficult to assess the functional effects of these genetic changes due to the lack of cell culture systems that recapitulate great ape organ complexity. Human and chimpanzee pluripotent stem cells (PSCs) can self-organize into three-dimensional (3D) tissues that recapitulate the morphology, function, and genetic programs controlling organ development. Our vision is to use organoids to study the changes that set modern humans apart from our closest evolutionary relatives as well as all other organisms on the planet. In ANTHROPOID we will generate a great ape developmental cell atlas using cortex, liver, and small intestine organoids. We will use single-cell transcriptomics and chromatin accessibility to identify cell type-specific features of transcriptome divergence at cellular resolution. We will dissect enhancer evolution using single-cell genomic screens and ancestralize human cells to resurrect pre-human cellular phenotypes. ANTHROPOID utilizes quantitative and state-of-the-art methods to explore exciting high-risk questions at multiple branches of the modern human lineage. This project is a ground breaking starting point to replay evolution and tackle the ancient question of what makes us uniquely human?
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym APOLLO
Project Advanced Signal Processing Technologies for Wireless Powered Communications
Researcher (PI) Ioannis Krikidis
Host Institution (HI) UNIVERSITY OF CYPRUS
Call Details Consolidator Grant (CoG), PE7, ERC-2018-COG
Summary Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Summary
Wireless power transfer (WPT), pioneered by Tesla, is an idea at least as old as radio communications. However, on the one hand, due to health concerns and the large antenna dimensions required for transmission of high energy levels, until recently WPT has been limited mostly to very short distance applications. On the other hand, recent advances in silicon technology have significantly reduced the energy needs of electronic systems, making WPT over radio waves a potential source of energy for low power devices. Although WPT through radio waves has already found various short-range applications (such as the radio-frequency identification technology, healthcare monitoring etc.), its integration as a building block in the operation of wireless communications systems is still unexploited. On the other hand, conventional radio wave based information and energy transmissions have largely been designed separately. However, many applications can benefit from simultaneous wireless information and power transfer (SWIPT).
The overall objective of the APOLLO project is to study the integration of WPT/SWIPT technology into future wireless communication systems. Compared to past and current research efforts in this area, our technical approach is deeply interdisciplinary and more comprehensive, combining the expertise of wireless communications, control theory, information theory, optimization, and electronics/microwave engineering.
The key outcomes of the project include: 1) a rigorous and complete mathematical theory for WPT/SWIPT via information/communication/control theoretic studies; 2) new physical and cross-layer mechanisms that will enable the integration of WPT/SWIPT into future communication systems; 3) new network architectures that will fully exploit potential benefits of WPT/SWIPT; and 4) development of a proof-of-concept by implementing highly-efficient and multi-band metamaterial energy harvesting sensors for SWIPT.
Max ERC Funding
1 930 625 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym aQUARiUM
Project QUAntum nanophotonics in Rolled-Up Metamaterials
Researcher (PI) Humeyra CAGLAYAN
Host Institution (HI) TAMPEREEN KORKEAKOULUSAATIO SR
Call Details Starting Grant (StG), PE7, ERC-2018-STG
Summary Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Summary
Novel sophisticated technologies that exploit the laws of quantum physics form a cornerstone for the future well-being, economic growth and security of Europe. Here photonic devices have gained a prominent position because the absorption, emission, propagation or storage of a photon is a process that can be harnessed at a fundamental level and render more practical ways to use light for such applications. However, the interaction of light with single quantum systems under ambient conditions is typically very weak and difficult to control. Furthermore, there are quantum phenomena occurring in matter at nanometer length scales that are currently not well understood. These deficiencies have a direct and severe impact on creating a bridge between quantum physics and photonic device technologies. aQUARiUM, precisely address the issue of controlling and enhancing the interaction between few photons and rolled-up nanostructures with ability to be deployed in practical applications.
With aQUARiUM, we will take epsilon (permittivity)-near-zero (ENZ) metamaterials into quantum nanophotonics. To this end, we will integrate quantum emitters with rolled-up waveguides, that act as ENZ metamaterial, to expand and redefine the range of light-matter interactions. We will explore the electromagnetic design freedom enabled by the extended modes of ENZ medium, which “stretches” the effective wavelength inside the structure. Specifically, aQUARiUM is built around the following two objectives: (i) Enhancing light-matter interactions with single emitters (Enhance) independent of emitter position. (ii) Enabling collective excitations in dense emitter ensembles (Collect) coherently connect emitters on nanophotonic devices to obtain coherent emission.
aQUARiUM aims to create novel light-sources and long-term entanglement generation and beyond. The envisioned outcome of aQUARiUM is a wholly new photonic platform applicable across a diverse range of areas.
Max ERC Funding
1 499 431 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ArtHep
Project Hepatocytes-Like Microreactors for Liver Tissue Engineering
Researcher (PI) Brigitte STADLER
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Summary
The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Max ERC Funding
1 992 289 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym ATOP
Project Atomically-engineered nonlinear photonics with two-dimensional layered material superlattices
Researcher (PI) zhipei SUN
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Summary
The project aims at introducing a paradigm shift in the development of nonlinear photonics with atomically-engineered two-dimensional (2D) van der Waals superlattices (2DSs). Monolayer 2D materials have large optical nonlinear susceptibilities, a few orders of magnitude larger than typical traditional bulk materials. However, nonlinear frequency conversion efficiency of monolayer 2D materials is typically weak mainly due to their extremely short interaction length (~atomic scale) and relatively large absorption coefficient (e.g.,>5×10^7 m^-1 in the visible range for graphene and MoS2 after thickness normalization). In this context, I will construct atomically-engineered heterojunctions based 2DSs to significantly enhance the nonlinear optical responses of 2D materials by coherently increasing light-matter interaction length and efficiently creating fundamentally new physical properties (e.g., reducing optical loss and increasing nonlinear susceptibilities).
The concrete project objectives are to theoretically calculate, experimentally fabricate and study optical nonlinearities of 2DSs for next-generation nonlinear photonics at the nanoscale. More specifically, I will use 2DSs as new building blocks to develop three of the most disruptive nonlinear photonic devices: (1) on-chip optical parametric generation sources; (2) broadband Terahertz sources; (3) high-purity photon-pair emitters. These devices will lead to a breakthrough technology to enable highly-integrated, high-efficient and wideband lab-on-chip photonic systems with unprecedented performance in system size, power consumption, flexibility and reliability, ideally fitting numerous growing and emerging applications, e.g. metrology, portable sensing/imaging, and quantum-communications. Based on my proven track record and my pioneering work on 2D materials based photonics and optoelectronics, I believe I will accomplish this ambitious frontier research program with a strong interdisciplinary nature.
Max ERC Funding
2 442 448 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym AUTOMATION
Project AUTOMATION AND INCOME DISTRIBUTION: A QUANTITATIVE ASSESSMENT
Researcher (PI) David Hémous
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Summary
Since the invention of the spinning frame, automation has been one of the drivers of economic growth. Yet, workers, economist or the general public have been concerned that automation may destroy jobs or create inequality. This concern is particularly prevalent today with the sustained rise in economic inequality and fast technological progress in IT, robotics or self-driving cars. The empirical literature has showed the impact of automation on income distribution. Yet, the level of wages itself should also affect the incentives to undertake automation innovations. Understanding this feedback is key to assess the long-term effect of policies. My project aims to provide the first quantitative account of the two-way relationship between automation and the income distribution.
It is articulated around three parts. First, I will use patent data to study empirically the causal effect of wages on automation innovations. To do so, I will build firm-level variation in the wages of the customers of innovating firms by exploiting variations in firms’ exposure to international markets. Second, I will study empirically the causal effect of automation innovations on wages. There, I will focus on local labour market and use the patent data to build exogenous variations in local knowledge. Third, I will calibrate an endogenous growth model with firm dynamics and automation using Danish firm-level data. The model will replicate stylized facts on the labour share distribution across firms. It will be used to compute the contribution of automation to economic growth or the decline of the labour share. Moreover, as a whole, the project will use two different methods (regression analysis and calibrated model) and two different types of data, to answer questions of crucial policy importance such as: Taking into account the response of automation, what are the long-term effects on wages of an increase in the minimum wage, a reduction in labour costs, or a robot tax?
Max ERC Funding
1 295 890 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AXPLAST
Project Deep brain imaging of cellular mechanisms of sensory processing and learning
Researcher (PI) Jan GRUNDEMANN
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), LS5, ERC-2018-STG
Summary Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Summary
Learning and memory are the basis of our behaviour and mental well-being. Understanding the mechanisms of structural and cellular plasticity in defined neuronal circuits in vivo will be crucial to elucidate principles of circuit-specific memory formation and their relation to changes in neuronal ensemble dynamics.
Structural plasticity studies were technically limited to cortex, excluding deep brain areas like the amygdala, and mainly focussed on the input site (dendritic spines), whilst the plasticity of the axon initial segment (AIS), a neuron’s site of output generation, was so far not studied in vivo. Length and location of the AIS are plastic and strongly affects a neurons spike output. However, it remains unknown if AIS plasticity regulates neuronal activity upon learning in vivo.
We will combine viral expression of AIS live markers and genetically-encoded Ca2+-sensors with novel deep brain imaging techniques via gradient index (GRIN) lenses to investigate how AIS location and length are regulated upon associative learning in amygdala circuits in vivo. Two-photon time-lapse imaging of the AIS of amygdala neurons upon fear conditioning will help us to track learning-driven AIS location dynamics. Next, we will combine miniature microscope imaging of neuronal activity in freely moving animals with two-photon imaging to link AIS location, length and plasticity to the intrinsic activity as well as learning-related response plasticity of amygdala neurons during fear learning and extinction in vivo. Finally, we will test if AIS plasticity is a general cellular plasticity mechanisms in brain areas afferent to the amygdala, e.g. thalamus.
Using a combination of two-photon and miniature microscopy imaging to map structural dynamics of defined neural circuits in the amygdala and its thalamic input areas will provide fundamental insights into the cellular mechanisms underlying sensory processing upon learning and relate network level plasticity with the cellular level.
Max ERC Funding
1 475 475 €
Duration
Start date: 2018-12-01, End date: 2023-11-30