Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym ABACUS
Project Advancing Behavioral and Cognitive Understanding of Speech
Researcher (PI) Bart De Boer
Host Institution (HI) VRIJE UNIVERSITEIT BRUSSEL
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Summary
I intend to investigate what cognitive mechanisms give us combinatorial speech. Combinatorial speech is the ability to make new words using pre-existing speech sounds. Humans are the only apes that can do this, yet we do not know how our brains do it, nor how exactly we differ from other apes. Using new experimental techniques to study human behavior and new computational techniques to model human cognition, I will find out how we deal with combinatorial speech.
The experimental part will study individual and cultural learning. Experimental cultural learning is a new technique that simulates cultural evolution in the laboratory. Two types of cultural learning will be used: iterated learning, which simulates language transfer across generations, and social coordination, which simulates emergence of norms in a language community. Using the two types of cultural learning together with individual learning experiments will help to zero in, from three angles, on how humans deal with combinatorial speech. In addition it will make a methodological contribution by comparing the strengths and weaknesses of the three methods.
The computer modeling part will formalize hypotheses about how our brains deal with combinatorial speech. Two models will be built: a high-level model that will establish the basic algorithms with which combinatorial speech is learned and reproduced, and a neural model that will establish in more detail how the algorithms are implemented in the brain. In addition, the models, through increasing understanding of how humans deal with speech, will help bridge the performance gap between human and computer speech recognition.
The project will advance science in four ways: it will provide insight into how our unique ability for using combinatorial speech works, it will tell us how this is implemented in the brain, it will extend the novel methodology of experimental cultural learning and it will create new computer models for dealing with human speech.
Max ERC Funding
1 276 620 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ABEP
Project Asset Bubbles and Economic Policy
Researcher (PI) Jaume Ventura Fontanet
Host Institution (HI) Centre de Recerca en Economia Internacional (CREI)
Call Details Advanced Grant (AdG), SH1, ERC-2009-AdG
Summary Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Summary
Advanced capitalist economies experience large and persistent movements in asset prices that are difficult to justify with economic fundamentals. The internet bubble of the 1990s and the real state market bubble of the 2000s are two recent examples. The predominant view is that these bubbles are a market failure, and are caused by some form of individual irrationality on the part of market participants. This project is based instead on the view that market participants are individually rational, although this does not preclude sometimes collectively sub-optimal outcomes. Bubbles are thus not a source of market failure by themselves but instead arise as a result of a pre-existing market failure, namely, the existence of pockets of dynamically inefficient investments. Under some conditions, bubbles partly solve this problem, increasing market efficiency and welfare. It is also possible however that bubbles do not solve the underlying problem and, in addition, create negative side-effects. The main objective of this project is to develop this view of asset bubbles, and produce an empirically-relevant macroeconomic framework that allows us to address the following questions: (i) What is the relationship between bubbles and financial market frictions? Special emphasis is given to how the globalization of financial markets and the development of new financial products affect the size and effects of bubbles. (ii) What is the relationship between bubbles, economic growth and unemployment? The theory suggests the presence of virtuous and vicious cycles, as economic growth creates the conditions for bubbles to pop up, while bubbles create incentives for economic growth to happen. (iii) What is the optimal policy to manage bubbles? We need to develop the tools that allow policy makers to sustain those bubbles that have positive effects and burst those that have negative effects.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym ABRSEIST
Project Antibiotic Resistance: Socio-Economic Determinants and the Role of Information and Salience in Treatment Choice
Researcher (PI) Hannes ULLRICH
Host Institution (HI) DEUTSCHES INSTITUT FUR WIRTSCHAFTSFORSCHUNG DIW (INSTITUT FUR KONJUNKTURFORSCHUNG) EV
Call Details Starting Grant (StG), SH1, ERC-2018-STG
Summary Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Summary
Antibiotics have contributed to a tremendous increase in human well-being, saving many millions of lives. However, antibiotics become obsolete the more they are used as selection pressure promotes the development of resistant bacteria. The World Health Organization has proclaimed antibiotic resistance as a major global threat to public health. Today, 700,000 deaths per year are due to untreatable infections. To win the battle against antibiotic resistance, new policies affecting the supply and demand of existing and new drugs must be designed. I propose new research to identify and evaluate feasible and effective demand-side policy interventions targeting the relevant decision makers: physicians and patients. ABRSEIST will make use of a broad econometric toolset to identify mechanisms linking antibiotic resistance and consumption exploiting a unique combination of physician-patient-level antibiotic resistance, treatment, and socio-economic data. Using machine learning methods adapted for causal inference, theory-driven structural econometric analysis, and randomization in the field it will provide rigorous evidence on effective intervention designs. This research will improve our understanding of how prescribing, resistance, and the effect of antibiotic use on resistance, are distributed in the general population which has important implications for the design of targeted interventions. It will then estimate a structural model of general practitioners’ acquisition and use of information under uncertainty about resistance in prescription choice, allowing counterfactual analysis of information-improving policies such as mandatory diagnostic testing. The large-scale and structural econometric analyses allow flexible identification of physician heterogeneity, which ABRSEIST will exploit to design and evaluate targeted, randomized information nudges in the field. The result will be improved rational use and a toolset applicable in contexts of antibiotic prescribing.
Max ERC Funding
1 498 920 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym ABYSS
Project ABYSS - Assessment of bacterial life and matter cycling in deep-sea surface sediments
Researcher (PI) Antje Boetius
Host Institution (HI) ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FUR POLAR- UND MEERESFORSCHUNG
Call Details Advanced Grant (AdG), LS8, ERC-2011-ADG_20110310
Summary The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Summary
The deep-sea floor hosts a distinct microbial biome covering 67% of the Earth’s surface, characterized by cold temperatures, permanent darkness, high pressure and food limitation. The surface sediments are dominated by bacteria, with on average a billion cells per ml. Benthic bacteria are highly relevant to the Earth’s element cycles as they remineralize most of the organic matter sinking from the productive surface ocean, and return nutrients, thereby promoting ocean primary production. What passes the bacterial filter is a relevant sink for carbon on geological time scales, influencing global oxygen and carbon budgets, and fueling the deep subsurface biosphere. Despite the relevance of deep-sea sediment bacteria to climate, geochemical cycles and ecology of the seafloor, their genetic and functional diversity, niche differentiation and biological interactions remain unknown. Our preliminary work in a global survey of deep-sea sediments enables us now to target specific genes for the quantification of abyssal bacteria. We can trace isotope-labeled elements into communities and single cells, and analyze the molecular alteration of organic matter during microbial degradation, all in context with environmental dynamics recorded at the only long-term deep-sea ecosystem observatory in the Arctic that we maintain. I propose to bridge biogeochemistry, ecology, microbiology and marine biology to develop a systematic understanding of abyssal sediment bacterial community distribution, diversity, function and interactions, by combining in situ flux studies and different visualization techniques with a wide range of molecular tools. Substantial progress is expected in understanding I) identity and function of the dominant types of indigenous benthic bacteria, II) dynamics in bacterial activity and diversity caused by variations in particle flux, III) interactions with different types and ages of organic matter, and other biological factors.
Max ERC Funding
3 375 693 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ACAP
Project Acency Costs and Asset Pricing
Researcher (PI) Thomas Mariotti
Host Institution (HI) FONDATION JEAN-JACQUES LAFFONT,TOULOUSE SCIENCES ECONOMIQUES
Call Details Starting Grant (StG), SH1, ERC-2007-StG
Summary The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Summary
The main objective of this research project is to contribute at bridging the gap between the two main branches of financial theory, namely corporate finance and asset pricing. It is motivated by the conviction that these two aspects of financial activity should and can be analyzed within a unified framework. This research will borrow from these two approaches in order to construct theoretical models that allow one to analyze the design and issuance of financial securities, as well as the dynamics of their valuations. Unlike asset pricing, which takes as given the price of the fundamentals, the goal is to derive security price processes from a precise description of firm’s operations and internal frictions. Regarding the latter, and in line with traditional corporate finance theory, the analysis will emphasize the role of agency costs within the firm for the design of its securities. But the analysis will be pushed one step further by studying the impact of these agency costs on key financial variables such as stock and bond prices, leverage, book-to-market ratios, default risk, or the holding of liquidities by firms. One of the contributions of this research project is to show how these variables are interrelated when firms and investors agree upon optimal financial arrangements. The final objective is to derive a rich set of testable asset pricing implications that would eventually be brought to the data.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-11-01, End date: 2014-10-31
Project acronym ACQDIV
Project Acquisition processes in maximally diverse languages: Min(d)ing the ambient language
Researcher (PI) Sabine Erika Stoll
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary "Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Summary
"Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Max ERC Funding
1 998 438 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30