Project acronym 4DPHOTON
Project Beyond Light Imaging: High-Rate Single-Photon Detection in Four Dimensions
Researcher (PI) Massimiliano FIORINI
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Summary
Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Max ERC Funding
1 975 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym A-HERO
Project Anthelmintic Research and Optimization
Researcher (PI) Jennifer Irene Keiser
Host Institution (HI) SCHWEIZERISCHES TROPEN- UND PUBLIC HEALTH-INSTITUT
Country Switzerland
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary "I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Summary
"I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Max ERC Funding
1 927 350 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADIMMUNE
Project Decoding interactions between adipose tissue immune cells, metabolic function, and the intestinal microbiome in obesity
Researcher (PI) Eran Elinav
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Consolidator Grant (CoG), LS6, ERC-2018-COG
Summary Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Summary
Obesity and its metabolic co-morbidities have given rise to a rapidly expanding ‘metabolic syndrome’ pandemic affecting
hundreds of millions of individuals worldwide. The integrative genetic and environmental causes of the obesity pandemic
remain elusive. White adipose tissue (WAT)-resident immune cells have recently been highlighted as important factors
contributing to metabolic complications. However, a comprehensive understanding of the regulatory circuits governing their
function and the cell type-specific mechanisms by which they contribute to the development of metabolic syndrome is
lacking. Likewise, the gut microbiome has been suggested as a critical regulator of obesity, but the bacterial species and
metabolites that influence WAT inflammation are entirely unknown.
We propose to use our recently developed high-throughput genomic and gnotobiotic tools, integrated with CRISPR-mediated interrogation of gene function, microbial culturomics, and in-vivo metabolic analysis in newly generated mouse models, in order to achieve a new level of molecular understanding of how WAT immune cells integrate environmental cues into their crosstalk with organismal metabolism, and to explore the microbial contributions to the molecular etiology of WAT inflammation in the pathogenesis of diet-induced obesity. Specifically, we aim to (a) decipher the global regulatory landscape and interaction networks of WAT hematopoietic cells at the single-cell level, (b) identify new mediators of WAT immune cell contributions to metabolic homeostasis, and (c) decode how host-microbiome communication shapes the development of WAT inflammation and obesity.
Unraveling the principles of WAT immune cell regulation and their amenability to change by host-microbiota interactions
may lead to a conceptual leap forward in our understanding of metabolic physiology and disease. Concomitantly, it may
generate a platform for microbiome-based personalized therapy against obesity and its complications.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien Andre Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym Agglomerates
Project Infinite Protein Self-Assembly in Health and Disease
Researcher (PI) Emmanuel Doram LEVY
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Summary
Understanding how proteins respond to mutations is of paramount importance to biology and disease. While protein stability and misfolding have been instrumental in rationalizing the impact of mutations, we recently discovered that an alternative route is also frequent, where mutations at the surface of symmetric proteins trigger novel self-interactions that lead to infinite self-assembly. This mechanism can be involved in disease, as in sickle-cell anemia, but may also serve in adaptation. Importantly, it differs fundamentally from aggregation, because misfolding does not drive it. Thus, we term it “agglomeration”. The ease with which agglomeration can occur, even by single point mutations, shifts the paradigm of how quickly new protein assemblies can emerge, both in health and disease. This prompts us to determine the basic principles of protein agglomeration and explore its implications in cell physiology and human disease.
We propose an interdisciplinary research program bridging atomic and cellular scales to explore agglomeration in three aims: (i) Map the landscape of protein agglomeration in response to mutation in endogenous yeast proteins; (ii) Characterize how yeast physiology impacts agglomeration by changes in gene expression or cell state, and, conversely, how protein agglomerates impact yeast fitness. (iii) Analyze agglomeration in relation to human disease via two approaches. First, by predicting single nucleotide polymorphisms that trigger agglomeration, prioritizing them using knowledge from Aims 1 & 2, and characterizing them experimentally. Second, by providing a proof-of-concept that agglomeration can be exploited in drug design, whereby drugs induce its formation, like mutations can do.
Overall, through this research, we aim to establish agglomeration as a paradigm for protein assembly, with implications for our understanding of evolution, physiology, and disease.
Max ERC Funding
2 574 819 €
Duration
Start date: 2019-04-01, End date: 2024-09-30
Project acronym Atto-Zepto
Project Ultrasensitive Nano-Optomechanical Sensors
Researcher (PI) Olivier ARCIZET
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Summary
By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Max ERC Funding
2 067 905 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BactRNA
Project Bacterial small RNAs networks unravelling novel features of transcription and translation
Researcher (PI) Maude Audrey Guillier
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Regulation of gene expression plays a key role in the ability of bacteria to rapidly adapt to changing environments and to colonize extremely diverse habitats. The relatively recent discovery of a plethora of small regulatory RNAs and the beginning of their characterization has unravelled new aspects of bacterial gene expression. First, the expression of many bacterial genes responds to a complex network of both transcriptional and post-transcriptional regulators. However, the properties of the resulting regulatory circuits on the dynamics of gene expression and in the bacterial adaptive response have been poorly addressed so far. In a first part of this project, we will tackle this question by characterizing the circuits that are formed between two widespread classes of bacterial regulators, the sRNAs and the two-component systems, which act at the post-transcriptional and the transcriptional level, respectively. The study of sRNAs also led to major breakthroughs regarding the basic mechanisms of gene expression. In particular, we recently showed that repressor sRNAs can target activating stem-loop structures located within the coding region of mRNAs that promote translation initiation, in striking contrast with the previously recognized inhibitory role of mRNA structures in translation. The second objective of this project is thus to draw an unprecedented map of non-canonical translation initiation events and their regulation by sRNAs.
Overall, this project will greatly improve our understanding of how bacteria can so rapidly and successfully adapt to many different environments, and in the long term, provide clues towards the development of anti-bacterial strategies.
Summary
Regulation of gene expression plays a key role in the ability of bacteria to rapidly adapt to changing environments and to colonize extremely diverse habitats. The relatively recent discovery of a plethora of small regulatory RNAs and the beginning of their characterization has unravelled new aspects of bacterial gene expression. First, the expression of many bacterial genes responds to a complex network of both transcriptional and post-transcriptional regulators. However, the properties of the resulting regulatory circuits on the dynamics of gene expression and in the bacterial adaptive response have been poorly addressed so far. In a first part of this project, we will tackle this question by characterizing the circuits that are formed between two widespread classes of bacterial regulators, the sRNAs and the two-component systems, which act at the post-transcriptional and the transcriptional level, respectively. The study of sRNAs also led to major breakthroughs regarding the basic mechanisms of gene expression. In particular, we recently showed that repressor sRNAs can target activating stem-loop structures located within the coding region of mRNAs that promote translation initiation, in striking contrast with the previously recognized inhibitory role of mRNA structures in translation. The second objective of this project is thus to draw an unprecedented map of non-canonical translation initiation events and their regulation by sRNAs.
Overall, this project will greatly improve our understanding of how bacteria can so rapidly and successfully adapt to many different environments, and in the long term, provide clues towards the development of anti-bacterial strategies.
Max ERC Funding
1 999 754 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym bECOMiNG
Project spontaneous Evolution and Clonal heterOgeneity in MoNoclonal Gammopathies: from mechanisms of progression to clinical management
Researcher (PI) Niccolo Bolli
Host Institution (HI) UNIVERSITA DEGLI STUDI DI MILANO
Country Italy
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Summary
As an onco-hematologist with a strong expertise in genomics, I significantly contributed to the understanding of multiple myeloma (MM) heterogeneity and its evolution over time, driven by genotypic and phenotypic features carried by different subpopulations of cells. MM is preceded by prevalent, asymptomatic stages that may evolve with variable frequency, not accurately captured by current clinical prognostic scores. Supported by preliminary data, my hypothesis is that the same heterogeneity is present early on the disease course, and identification of the biological determinants of evolution at this stage will allow better prediction of its evolutionary trajectory, if not its control. In this proposal I will therefore make a sharp change from conventional approaches and move to early stages of MM using unique retrospective sample cohorts and ambitious prospective sampling. To identify clonal MM cells in the elderly before a monoclonal gammopathy can be detected, I will collect bone marrow (BM) from hundreds of hip replacement specimens, and analyze archive peripheral blood samples of thousands of healthy individuals with years of annotated clinical follow-up. This will identify early genomic alterations that are permissive to disease initiation/evolution and may serve as biomarkers for clinical screening. Through innovative, integrated single-cell genotyping and phenotyping of hundreds of asymptomatic MMs, I will functionally dissect heterogeneity and characterize the BM microenvironment to look for determinants of disease progression. Correlation with clinical outcome and mini-invasive serial sampling of circulating cell-free DNA will identify candidate biological markers to better predict evolution. Last, aggressive modelling of candidate early lesions and modifier screens will offer a list of vulnerabilities that could be exploited for rationale therapies. These methodologies will deliver a paradigm for the use of molecularly-driven precision medicine in cancer.
Max ERC Funding
1 998 781 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym BRAIN-MATCH
Project Matching CNS Lineage Maps with Molecular Brain Tumor Portraits for Translational Exploitation
Researcher (PI) Stefan PFISTER
Host Institution (HI) DEUTSCHES KREBSFORSCHUNGSZENTRUM HEIDELBERG
Country Germany
Call Details Consolidator Grant (CoG), LS2, ERC-2018-COG
Summary Brain tumors represent an extremely heterogeneous group of more than 100 different molecularly distinct diseases, many of which are still almost uniformly lethal despite five decades of clinical trials. In contrast to hematologic malignancies and carcinomas, the cell-of-origin for the vast majority of these entities is unknown. This knowledge gap currently precludes a comprehensive understanding of tumor biology and also limits translational exploitation (e.g., utilizing lineage targets for novel therapies and circulating brain tumor cells for liquid biopsies).
The BRAIN-MATCH project represents an ambitious program to address this challenge and unmet medical need by taking an approach that (i) extensively utilizes existing molecular profiles of more than 30,000 brain tumor samples covering more than 100 different entities, publicly available single-cell sequencing data of normal brain regions, and bulk normal tissue data at different times of development across different species; (ii) generates unprecedented maps of normal human CNS development by using state-of-the art novel technologies; (iii) matches these molecular portraits of normal cell types with tumor datasets in order to identify specific cell-of-origin populations for individual tumor entities; and (iv) validates the most promising cell-of-origin populations and tumor-specific lineage and/or surface markers in vivo.
The expected outputs of BRAIN-MATCH are four-fold: (i) delivery of an unprecedented atlas of human normal CNS development, which will also be of great relevance for diverse fields other than cancer; (ii) functional validation of at least three lineage targets; (iii) isolation and molecular characterization of circulating brain tumor cells from patients´ blood for at least five tumor entities; and (iv) generation of at least three novel mouse models of brain tumor entities for which currently no faithful models exist.
Summary
Brain tumors represent an extremely heterogeneous group of more than 100 different molecularly distinct diseases, many of which are still almost uniformly lethal despite five decades of clinical trials. In contrast to hematologic malignancies and carcinomas, the cell-of-origin for the vast majority of these entities is unknown. This knowledge gap currently precludes a comprehensive understanding of tumor biology and also limits translational exploitation (e.g., utilizing lineage targets for novel therapies and circulating brain tumor cells for liquid biopsies).
The BRAIN-MATCH project represents an ambitious program to address this challenge and unmet medical need by taking an approach that (i) extensively utilizes existing molecular profiles of more than 30,000 brain tumor samples covering more than 100 different entities, publicly available single-cell sequencing data of normal brain regions, and bulk normal tissue data at different times of development across different species; (ii) generates unprecedented maps of normal human CNS development by using state-of-the art novel technologies; (iii) matches these molecular portraits of normal cell types with tumor datasets in order to identify specific cell-of-origin populations for individual tumor entities; and (iv) validates the most promising cell-of-origin populations and tumor-specific lineage and/or surface markers in vivo.
The expected outputs of BRAIN-MATCH are four-fold: (i) delivery of an unprecedented atlas of human normal CNS development, which will also be of great relevance for diverse fields other than cancer; (ii) functional validation of at least three lineage targets; (iii) isolation and molecular characterization of circulating brain tumor cells from patients´ blood for at least five tumor entities; and (iv) generation of at least three novel mouse models of brain tumor entities for which currently no faithful models exist.
Max ERC Funding
1 999 875 €
Duration
Start date: 2019-05-01, End date: 2024-04-30