Project acronym ADAPT
Project Life in a cold climate: the adaptation of cereals to new environments and the establishment of agriculture in Europe
Researcher (PI) Terence Austen Brown
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Country United Kingdom
Call Details Advanced Grant (AdG), SH6, ERC-2013-ADG
Summary "This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Summary
"This project explores the concept of agricultural spread as analogous to enforced climate change and asks how cereals adapted to new environments when agriculture was introduced into Europe. Archaeologists have long recognized that the ecological pressures placed on crops would have had an impact on the spread and subsequent development of agriculture, but previously there has been no means of directly assessing the scale and nature of this impact. Recent work that I have directed has shown how such a study could be carried out, and the purpose of this project is to exploit these breakthroughs with the goal of assessing the influence of environmental adaptation on the spread of agriculture, its adoption as the primary subsistence strategy, and the subsequent establishment of farming in different parts of Europe. This will correct the current imbalance between our understanding of the human and environmental dimensions to the domestication of Europe. I will use methods from population genomics to identify loci within the barley and wheat genomes that have undergone selection since the beginning of cereal cultivation in Europe. I will then use ecological modelling to identify those loci whose patterns of selection are associated with ecogeographical variables and hence represent adaptations to local environmental conditions. I will assign dates to the periods when adaptations occurred by sequencing ancient DNA from archaeobotanical assemblages and by computer methods that enable the temporal order of adaptations to be deduced. I will then synthesise the information on environmental adaptations with dating evidence for the spread of agriculture in Europe, which reveals pauses that might be linked to environmental adaptation, with demographic data that indicate regions where Neolithic populations declined, possibly due to inadequate crop productivity, and with an archaeobotanical database showing changes in the prevalence of individual cereals in different regions."
Max ERC Funding
2 492 964 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADOS
Project AMPA Receptor Dynamic Organization and Synaptic transmission in health and disease
Researcher (PI) Daniel Georges Gustave Choquet
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary AMPA glutamate receptors (AMPAR) play key roles in information processing by the brain as they mediate nearly all fast excitatory synaptic transmission. Their spatio-temporal organization in the post synapse with respect to presynaptic glutamate release sites is a key determinant in synaptic transmission. The activity-dependent regulation of AMPAR organization is at the heart of synaptic plasticity processes underlying learning and memory. Dysfunction of synaptic transmission - hence AMPAR organization - is likely at the origin of a number of brain diseases.
Building on discoveries made during my past ERC grant, our new ground-breaking objective is to uncover the mechanisms that link synaptic transmission with the dynamic organization of AMPAR and associated proteins. For this aim, we have assembled a team of neurobiologists, computer scientists and chemists with a track record of collaboration. We will combine physiology, cellular and molecular neurobiology with development of novel quantitative imaging and biomolecular tools to probe the molecular dynamics that regulate synaptic transmission.
Live high content 3D SuperResolution Light Imaging (SRLI) combined with electron microscopy will allow unprecedented visualization of AMPAR organization in synapses at the scale of individual subunits up to the level of intact tissue. Simultaneous SRLI and electrophysiology will elucidate the intricate relations between dynamic AMPAR organization, trafficking and synaptic transmission. Novel peptide- and small protein-based probes used as protein-protein interaction reporters and modulators will be developed to image and directly interfere with synapse organization.
We will identify new processes that are fundamental to activity dependent modifications of synaptic transmission. We will apply the above findings to understand the causes of early cognitive deficits in models of neurodegenerative disorders and open new avenues of research for innovative therapies.
Summary
AMPA glutamate receptors (AMPAR) play key roles in information processing by the brain as they mediate nearly all fast excitatory synaptic transmission. Their spatio-temporal organization in the post synapse with respect to presynaptic glutamate release sites is a key determinant in synaptic transmission. The activity-dependent regulation of AMPAR organization is at the heart of synaptic plasticity processes underlying learning and memory. Dysfunction of synaptic transmission - hence AMPAR organization - is likely at the origin of a number of brain diseases.
Building on discoveries made during my past ERC grant, our new ground-breaking objective is to uncover the mechanisms that link synaptic transmission with the dynamic organization of AMPAR and associated proteins. For this aim, we have assembled a team of neurobiologists, computer scientists and chemists with a track record of collaboration. We will combine physiology, cellular and molecular neurobiology with development of novel quantitative imaging and biomolecular tools to probe the molecular dynamics that regulate synaptic transmission.
Live high content 3D SuperResolution Light Imaging (SRLI) combined with electron microscopy will allow unprecedented visualization of AMPAR organization in synapses at the scale of individual subunits up to the level of intact tissue. Simultaneous SRLI and electrophysiology will elucidate the intricate relations between dynamic AMPAR organization, trafficking and synaptic transmission. Novel peptide- and small protein-based probes used as protein-protein interaction reporters and modulators will be developed to image and directly interfere with synapse organization.
We will identify new processes that are fundamental to activity dependent modifications of synaptic transmission. We will apply the above findings to understand the causes of early cognitive deficits in models of neurodegenerative disorders and open new avenues of research for innovative therapies.
Max ERC Funding
2 491 157 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ANDLICA
Project Anderson Localization of Light by Cold Atoms
Researcher (PI) Robin KAISER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Summary
I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Max ERC Funding
2 490 717 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ARCHCAUCASUS
Project Technical and Social Innovations in the Caucasus: between the Eurasian Steppe and the Earliest Cities in the 4th and 3rd millennia BC
Researcher (PI) Svend HANSEN
Host Institution (HI) DEUTSCHES ARCHAOLOGISCHES INSTITUT
Country Germany
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Summary
This project leads to one of the most dynamic regions in prehistory: the Caucasus of the 4th and early 3rd mill. BC. During this vibrant time, basic innovations emerged, which were crucial until the 19th century: wheel and wagon, copper alloys, the potter’s wheel, new breeds of woolly sheep, domestication of the horse, and others. At the same time, massive migrations from the East European steppe during the early 3rd mill. BC changed the European gene pool.
The project challenges the still predominant narrative that all technical achievements stemmed from urban centres in Mesopotamia. New studies have created space for alternative hypotheses: possibly it was not the development of new techniques, but instead their adaptation from different ‘peripheries’ and their re-combination and re-configuration that formed the basis for the success of these ‘civilisations’.
The Caucasus, linking Mesopotamia to the Eurasia and Europe, is for the first time in the focus of a study on innovation transfer. The study will make a major contribution by investigation of four axial innovations: wheel and wagon, metal alloys, silver metallurgy and woolly sheep. 40 wheels will be analysed by computer tomography and strontium isotopes. Some 300 copper alloys artefacts and 200 silver objects will be examined using mass spectrometry with laser ablation. 400 aDNA genom-wide analyses of humans from burials in the North Caucasus will offer the unique chance of elucidating the role of migrations for the spread of innovations. The pottery in the region, often linked to Mesopotamia, will be studied under technical aspects and is a complementary path to shed light on migration and the transfer of knowledge. Excavations in settlements will allow building up a chronology using 400 AMS 14C analyses. The project is multidisciplinary, making use of the most up-to-date analytical methods. Our long experience and reputation on both sides of the Caucasus is the ideal background for cutting-edge research.
Max ERC Funding
2 487 875 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym astromnesis
Project The language of astrocytes: multilevel analysis to understand astrocyte communication and its role in memory-related brain operations and in cognitive behavior
Researcher (PI) Andrea Volterra
Host Institution (HI) UNIVERSITE DE LAUSANNE
Country Switzerland
Call Details Advanced Grant (AdG), LS5, ERC-2013-ADG
Summary In the 90s, two landmark observations brought to a paradigm shift about the role of astrocytes in brain function: 1) astrocytes respond to signals coming from other cells with transient Ca2+ elevations; 2) Ca2+ transients in astrocytes trigger release of neuroactive and vasoactive agents. Since then, many modulatory astrocytic actions and mechanisms were described, forming a complex - partly contradictory - picture, in which the exact roles and modes of astrocyte action remain ill defined. Our project wants to bring light into the “language of astrocytes”, i.e. into how they communicate with neurons and, ultimately, address their role in brain computations and cognitive behavior. To this end we will perform 4 complementary levels of analysis using highly innovative methodologies in order to obtain unprecedented results. We will study: 1) the subcellular organization of astrocytes underlying local microdomain communications by use of correlative light-electron microscopy; 2) the way individual astrocytes integrate inputs and control synaptic ensembles using 3D two-photon imaging, genetically-encoded Ca2+ indicators, optogenetics and electrophysiology; 3) the contribution of astrocyte ensembles to behavior-relevant circuit operations using miniaturized microscopes capturing neuronal/astrocytic population dynamics in freely-moving mice during memory tests; 4) the contribution of astrocytic signalling mechanisms to cognitive behavior using a set of new mouse lines with conditional, astrocyte-specific genetic modification of signalling pathways. We expect that this combination of groundbreaking ideas, innovative technologies and multilevel analysis makes our project highly attractive to the neuroscience community at large, bridging aspects of molecular, cellular, systems and behavioral neuroscience, with the goal of leading from a provocative hypothesis to the conclusive demonstration of whether and how “the language of astrocytes” participates in memory and cognition.
Summary
In the 90s, two landmark observations brought to a paradigm shift about the role of astrocytes in brain function: 1) astrocytes respond to signals coming from other cells with transient Ca2+ elevations; 2) Ca2+ transients in astrocytes trigger release of neuroactive and vasoactive agents. Since then, many modulatory astrocytic actions and mechanisms were described, forming a complex - partly contradictory - picture, in which the exact roles and modes of astrocyte action remain ill defined. Our project wants to bring light into the “language of astrocytes”, i.e. into how they communicate with neurons and, ultimately, address their role in brain computations and cognitive behavior. To this end we will perform 4 complementary levels of analysis using highly innovative methodologies in order to obtain unprecedented results. We will study: 1) the subcellular organization of astrocytes underlying local microdomain communications by use of correlative light-electron microscopy; 2) the way individual astrocytes integrate inputs and control synaptic ensembles using 3D two-photon imaging, genetically-encoded Ca2+ indicators, optogenetics and electrophysiology; 3) the contribution of astrocyte ensembles to behavior-relevant circuit operations using miniaturized microscopes capturing neuronal/astrocytic population dynamics in freely-moving mice during memory tests; 4) the contribution of astrocytic signalling mechanisms to cognitive behavior using a set of new mouse lines with conditional, astrocyte-specific genetic modification of signalling pathways. We expect that this combination of groundbreaking ideas, innovative technologies and multilevel analysis makes our project highly attractive to the neuroscience community at large, bridging aspects of molecular, cellular, systems and behavioral neuroscience, with the goal of leading from a provocative hypothesis to the conclusive demonstration of whether and how “the language of astrocytes” participates in memory and cognition.
Max ERC Funding
2 513 896 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AtomicGaugeSimulator
Project Classical and Atomic Quantum Simulation of Gauge Theories in Particle and Condensed Matter Physics
Researcher (PI) Uwe-Jens Richard Christian Wiese
Host Institution (HI) UNIVERSITAET BERN
Country Switzerland
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Summary
Gauge theories play a central role in particle and condensed matter physics. Heavy-ion collisions explore the strong dynamics of quarks and gluons, which also governs the deep interior of neutron stars, while strongly correlated electrons determine the physics of high-temperature superconductors and spin liquids. Numerical simulations of such systems are often hindered by sign problems. In quantum link models - an alternative formulation of gauge theories developed by the applicant - gauge fields emerge from discrete quantum variables. In the past year, in close collaboration with atomic physicists, we have established quantum link models as a framework for the atomic quantum simulation of dynamical gauge fields. Abelian gauge theories can be realized with Bose-Fermi mixtures of ultracold atoms in an optical lattice, while non-Abelian gauge fields arise from fermionic constituents embodied by alkaline-earth atoms. Quantum simulators, which do not suffer from the sign problem, shall be constructed to address non-trivial dynamics, including quantum phase transitions in spin liquids, the real-time dynamics of confining strings as well as of chiral symmetry restoration at finite temperature and baryon density, baryon superfluidity, or color-flavor locking. New classical simulation algorithms shall be developed in order to solve severe sign problems, to investigate confining gauge theories, and to validate the proposed quantum simulators. Starting from U(1) and SU(2) gauge theories, an atomic physics tool box shall be developed for quantum simulation of gauge theories of increasing complexity, ultimately aiming at 4-d Quantum Chromodynamics (QCD). This project is based on innovative ideas from particle, condensed matter, and computational physics, and requires an interdisciplinary team of researchers. It has the potential to drastically increase the power of simulations and to address very challenging problems that cannot be solved with classical simulation methods.
Max ERC Funding
1 975 242 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BICAEHFID
Project Biogeographic and cultural adaptations of early humans during the first intercontinental dispersals
Researcher (PI) Ignacio DE LA TORRE
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), SH6, ERC-2018-ADG
Summary Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Summary
Our understanding of the emergence and dispersal of the earliest tool-making hominins has been revolutionised in the last decade, with sites in eastern Africa and China pushing both events more than half a million years earlier than previously thought. Traditional models linking biological speciation, cultural innovation and migration events with climatic pulses have remained theoretical, and recent discoveries suggest that the picture of the earliest human colonization across the Old World is far more complex, demanding heuristic approaches to understand the biogeography and adaptive behaviours of early humans.
This project will be the first substantive attempt to produce a global synthesis of earliest human occupation dynamics by comparing the world’s longest sequences of early archaeological sites, namely eastern Africa and China. Our objective is to understand the alternative evolutionary trajectories adopted by hominins that shared an overarching biological and cultural background, but who faced different climatic and biogeographic challenges and opportunities.
The ambition of our global-scale objectives is accompanied by the unmatched quality of our datasets and the ground-breaking perspective we will adopt in their study. Fieldwork in the two most renowned sequences in each region alongside a primary study of additional top-quality assemblages in both subcontinents, will be combined with extensive metadata sets to produce comprehensive views of temporal trends and paleoecological patterns. Our state-of-the-art methodological sets (which combine an exceptionally diverse range of disciplines from geochemistry to niche modelling) and ground-breaking analytical perspective (which considers data from micro-stratigraphy to satellite imaging) will enable us to develop new approaches to challenge established paradigms and produce a new picture of the biogeographic adaptations of early stone-tool makers.
Max ERC Funding
2 499 996 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym CanISeeQG
Project Can I see Quantum Gravity?
Researcher (PI) Jan DE BOER
Host Institution (HI) UNIVERSITEIT VAN AMSTERDAM
Country Netherlands
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Summary
The interplay between two of the most important building blocks of nature, quantum mechanics and gravity, has been a great source of inspiration for theoretical physics, leading to discoveries such as the Hawking radiation of black holes and the development of string theory. In turn, the following picture emerged: physics at the most fundamental level is governed by the rules of quantum mechanics while gravity is some effective coarse-grained description of the underlying microscopic theory. Given that the microscopic degrees of freedom are non-local, standard techniques such as the renormalization group and effective field theory a priori do not apply. Nevertheless, we use effective field theories that incorporate general relativity to describe our observations.
With the discovery of gravitational waves and the various ongoing and upcoming experiments that will put general relativity to the test, it has become urgent to assess the validity of the standard framework of effective field theory for describing observable quantum gravity effects. Recent developments in resolving the information loss paradox and the quantum nature of black holes concluded that effective field theory must be modified in a way that uniquely incorporates quantum gravity. The main purpose of this proposal is to describe this modification in a precise and quantitative way, ultimately connecting it to potential experimental discoveries.
In order to achieve this goal, I will approach the problem using a combination of thermodynamics, hydrodynamics and quantum information theory, mostly in the context of the AdS/CFT correspondence, where a precise description of quantum gravity is available. As a by-product of identifying observational features of quantum gravity, I will also make substantial progress in several foundational problems. My broad track record and expertise, and the fact that I have already obtained promising preliminary results, makes me uniquely qualified to lead this endeavor.
Max ERC Funding
2 500 000 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CELLPHASE_AD
Project Genetics to understand cellular components of Alzheimer Disease pathogenesis
Researcher (PI) Bart Geert Alfons Paul DE STROOPER
Host Institution (HI) VIB VZW
Country Belgium
Call Details Advanced Grant (AdG), LS5, ERC-2018-ADG
Summary Alzheimer disease (AD) is a major health problem worldwide. New therapies require an accelerated translation of genetic information into mechanistic insights. Given limitations of rodent models, fully humanized models are needed to capture the complexity of the disease process.
Human stem cells (iPS) provide great possibilities but are largely investigated in vitro with associated limitations. Many of the novel genetic risk factors for AD are expressed in microglia and astroglia, which remains an understudied population in this classically neuron-centric field. We propose here mouse-human chimeric mouse models to test the effects of AD-associated genetic risk factors on the phenotypes of transplanted microglia and astroglia derived from patients and from genomic engineered, isogenic stem cells. The cells will be followed during disease progression in brain of wild type and of mice developing Aβ- and Tau- pathology. Using single cell transcriptomics, a dynamic view of the cell states over time is generated. In a first arm of the project, we investigate how the genetic makeup of patient derived stem cells with high and low polygenic risk scores influences pathological cell states. In the second arm of the project, we generate inducible Crisper/CAS9 iPS isogenic cell lines to manipulate rapidly and specifically the expression of 4 selected AD associated genes linked to a putative cholesterol pathway but also affecting inflammation. These cell lines will be used also in the second phase of the project when validating hypotheses generated from the extensive bioinformatics analysis of the 600.000 single human cell profiles generated. We expect to identify and validate >5 novel drug targets in the astroglia-microglia axis of AD pathogenesis.
Our work provides humanized models for AD, an answer on how genetic makeup affects microglia and astroglia in an AD relevant context, and establishes a highly versatile platform to explore human genetics in human cells in vivo.
Summary
Alzheimer disease (AD) is a major health problem worldwide. New therapies require an accelerated translation of genetic information into mechanistic insights. Given limitations of rodent models, fully humanized models are needed to capture the complexity of the disease process.
Human stem cells (iPS) provide great possibilities but are largely investigated in vitro with associated limitations. Many of the novel genetic risk factors for AD are expressed in microglia and astroglia, which remains an understudied population in this classically neuron-centric field. We propose here mouse-human chimeric mouse models to test the effects of AD-associated genetic risk factors on the phenotypes of transplanted microglia and astroglia derived from patients and from genomic engineered, isogenic stem cells. The cells will be followed during disease progression in brain of wild type and of mice developing Aβ- and Tau- pathology. Using single cell transcriptomics, a dynamic view of the cell states over time is generated. In a first arm of the project, we investigate how the genetic makeup of patient derived stem cells with high and low polygenic risk scores influences pathological cell states. In the second arm of the project, we generate inducible Crisper/CAS9 iPS isogenic cell lines to manipulate rapidly and specifically the expression of 4 selected AD associated genes linked to a putative cholesterol pathway but also affecting inflammation. These cell lines will be used also in the second phase of the project when validating hypotheses generated from the extensive bioinformatics analysis of the 600.000 single human cell profiles generated. We expect to identify and validate >5 novel drug targets in the astroglia-microglia axis of AD pathogenesis.
Our work provides humanized models for AD, an answer on how genetic makeup affects microglia and astroglia in an AD relevant context, and establishes a highly versatile platform to explore human genetics in human cells in vivo.
Max ERC Funding
2 374 998 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym CERQUTE
Project Certification of quantum technologies
Researcher (PI) Antonio AcIn
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Country Spain
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Summary
Given a quantum system, how can one ensure that it (i) is entangled? (ii) random? (iii) secure? (iv) performs a computation correctly? The concept of quantum certification embraces all these questions and CERQUTE’s main goal is to provide the tools to achieve such certification. The need of a new paradigm for quantum certification has emerged as a consequence of the impressive advances on the control of quantum systems. On the one hand, complex many-body quantum systems are prepared in many labs worldwide. On the other hand, quantum information technologies are making the transition to real applications. Quantum certification is a highly transversal concept that covers a broad range of scenarios –from many-body systems to protocols employing few devices– and questions –from theoretical results and experimental demonstrations to commercial products–. CERQUTE is organized along three research lines that reflect this broadness and inter-disciplinary character: (A) many-body quantum systems: the objective is to provide the tools to identify quantum properties of many-body quantum systems; (B) quantum networks: the objective is to characterize networks in the quantum regime; (C) quantum cryptographic protocols: the objective is to construct cryptography protocols offering certified security. Crucial to achieve these objectives is the development of radically new methods to deal with quantum systems in an efficient way. Expected outcomes are: (i) new methods to detect quantum phenomena in the many-body regime, (ii) new protocols to benchmark quantum simulators and annealers, (iii) first methods to characterize quantum causality, (iv) new protocols exploiting simple network geometries (v) experimentally-friendly cryptographic protocols offering certified security. CERQUTE goes at the heart of the fundamental question of what distinguishes quantum from classical physics and will provide the concepts and protocols for the certification of quantum phenomena and technologies.
Max ERC Funding
1 735 044 €
Duration
Start date: 2020-01-01, End date: 2024-12-31