Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 4DPHOTON
Project Beyond Light Imaging: High-Rate Single-Photon Detection in Four Dimensions
Researcher (PI) Massimiliano FIORINI
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Country Italy
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Summary
Goal of the 4DPHOTON project is the development and construction of a photon imaging detector with unprecedented performance. The proposed device will be capable of detecting fluxes of single-photons up to one billion photons per second, over areas of several square centimetres, and will measure - for each photon - position and time simultaneously with resolutions better than ten microns and few tens of picoseconds, respectively. These figures of merit will open many important applications allowing significant advances in particle physics, life sciences or other emerging fields where excellent timing and position resolutions are simultaneously required.
Our goal will be achieved thanks to the use of an application-specific integrated circuit in 65 nm complementary metal-oxide-semiconductor (CMOS) technology, that will deliver a timing resolution of few tens of picoseconds at the pixel level, over few hundred thousand individually-active pixel channels, allowing very high rates of photons to be detected, and the corresponding information digitized and transferred to a processing unit.
As a result of the 4DPHOTON project we will remove the constraints that many light imaging applications have due to the lack of precise single-photon information on four dimensions (4D): the three spatial coordinates and time simultaneously. In particular, we will prove the performance of this detector in the field of particle physics, performing the reconstruction of Cherenkov photon rings with a timing resolution of ten picoseconds. With its excellent granularity, timing resolution, rate capability and compactness, this detector will represent a new paradigm for the realisation of future Ring Imaging Cherenkov detectors, capable of achieving high efficiency particle identification in environments with very high particle multiplicities, exploiting time-association of the photon hits.
Max ERC Funding
1 975 000 €
Duration
Start date: 2019-12-01, End date: 2024-11-30
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragao Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Country Portugal
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADaPt
Project Adaptation, Dispersals and Phenotype: understanding the roles of climate,
natural selection and energetics in shaping global hunter-gatherer adaptability
Researcher (PI) Jay Stock
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Summary
Relative to other species, humans are characterised by considerable biological diversity despite genetic homogeneity. This diversity is reflected in skeletal variation, but we lack sufficient understanding of the underlying mechanisms to adequately interpret the archaeological record. The proposed research will address problems in our current understanding of the origins of human variation in the past by: 1) documenting and interpreting the pattern of global hunter-gatherer variation relative to genetic phylogenies and climatic variation; 2) testing the relationship between environmental and skeletal variation among genetically related hunter-gatherers from different environments; 3) examining the adaptability of living humans to different environments, through the study of energetic expenditure and life history trade-offs associated with locomotion; and 4) investigating the relationship between muscle and skeletal variation associated with locomotion in diverse environments. This will be achieved by linking: a) detailed study of the global pattern of hunter-gatherer variation in the Late Pleistocene and Holocene with; b) ground-breaking experimental research which tests the relationship between energetic stress, muscle function, and bone variation in living humans. The first component tests the correspondence between skeletal variation and both genetic and climatic history, to infer mechanisms driving variation. The second component integrates this skeletal variation with experimental studies of living humans to, for the first time, directly test adaptive implications of skeletal variation observed in the past. ADaPt will provide the first links between prehistoric hunter-gatherer variation and the evolutionary parameters of life history and energetics that may have shaped our success as a species. It will lead to breakthroughs necessary to interpret variation in the archaeological record, relative to human dispersals and adaptation in the past.
Max ERC Funding
1 911 485 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien Andre Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym ASEA
Project The aftermath of slavery in East Africa
Researcher (PI) Felicitas Maria BECKER
Host Institution (HI) UNIVERSITEIT GENT
Country Belgium
Call Details Consolidator Grant (CoG), SH6, ERC-2018-COG
Summary Legacies of slavery tend to affect societies deeply, but in inland East Africa have remained little explored. This project aims [1] to establish what happened to the hundreds of thousands of slaves present in mainland East Africa in ca. 1900 and to their descendants over the twentieth century, [2] to explain why the aftermath of slavery is so little discussed in the written sources and historiography of the region, and [3] to trace the social and political legacies of slavery up to the present. It will combine historical and anthropological methods, and, besides post-slavery, addresses questions pertaining to public history, social mobility, marginality and inequality, gender, and understandings of freedom. It pursues them through a series of place-specific case-studies tracing different courses and outcomes within the region, and through comparative work, both between the case studies and with studies on the aftermath of slavery in West Africa, the Indian Ocean and the Americas.
The project is ground-breaking through its long-term time frame, its wide-ranging combination of methods, and in questioning established assumptions, e.g. about the meaning of ‘freedom’ for ex-slaves. It is high-risk in the sense that the field researchers leading the case studies will need good knowledge of Swahili, good social contacts and the flexibility to identify and follow emerging leads wherever they take them. It is feasible because the proposed research program and conceptual frameworks can be adapted as the work develops, and given the obscurity of the regions, groups and questions involved, the resulting gains to knowledge will be major. It is high-gain because it will fill a gaping hole in current knowledge, and establish how people in East Africa coped with the toxic legacy of slavery, which often presents intractable problems, apparently with little disruption. The resulting comparisons will contribute to a better understanding of tensions in other post-slavery societies.
Summary
Legacies of slavery tend to affect societies deeply, but in inland East Africa have remained little explored. This project aims [1] to establish what happened to the hundreds of thousands of slaves present in mainland East Africa in ca. 1900 and to their descendants over the twentieth century, [2] to explain why the aftermath of slavery is so little discussed in the written sources and historiography of the region, and [3] to trace the social and political legacies of slavery up to the present. It will combine historical and anthropological methods, and, besides post-slavery, addresses questions pertaining to public history, social mobility, marginality and inequality, gender, and understandings of freedom. It pursues them through a series of place-specific case-studies tracing different courses and outcomes within the region, and through comparative work, both between the case studies and with studies on the aftermath of slavery in West Africa, the Indian Ocean and the Americas.
The project is ground-breaking through its long-term time frame, its wide-ranging combination of methods, and in questioning established assumptions, e.g. about the meaning of ‘freedom’ for ex-slaves. It is high-risk in the sense that the field researchers leading the case studies will need good knowledge of Swahili, good social contacts and the flexibility to identify and follow emerging leads wherever they take them. It is feasible because the proposed research program and conceptual frameworks can be adapted as the work develops, and given the obscurity of the regions, groups and questions involved, the resulting gains to knowledge will be major. It is high-gain because it will fill a gaping hole in current knowledge, and establish how people in East Africa coped with the toxic legacy of slavery, which often presents intractable problems, apparently with little disruption. The resulting comparisons will contribute to a better understanding of tensions in other post-slavery societies.
Max ERC Funding
1 921 250 €
Duration
Start date: 2019-11-01, End date: 2024-10-31
Project acronym Atto-Zepto
Project Ultrasensitive Nano-Optomechanical Sensors
Researcher (PI) Olivier ARCIZET
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Summary
By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Max ERC Funding
2 067 905 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym AXONGROWTH
Project Systematic analysis of the molecular mechanisms underlying axon growth during development and following injury
Researcher (PI) Oren Schuldiner
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Summary
Axon growth potential declines during development, contributing to the lack of effective regeneration in the adult central nervous system. What determines the intrinsic growth potential of neurites, and how such growth is regulated during development, disease and following injury is a fundamental question in neuroscience. Although multiple lines of evidence indicate that intrinsic growth capability is genetically encoded, its nature remains poorly defined. Neuronal remodeling of the Drosophila mushroom body offers a unique opportunity to study the mechanisms of various types of axon degeneration and growth. We have recently demonstrated that regrowth of axons following developmental pruning is not only distinct from initial outgrowth but also shares molecular similarities with regeneration following injury. In this proposal we combine state of the art tools from genomics, functional genetics and microscopy to perform a comprehensive study of the mechanisms underlying axon growth during development and following injury. First, we will combine genetic, biochemical and genomic studies to gain a mechanistic understanding of the developmental regrowth program. Next, we will perform extensive transcriptomic analyses and comparisons aimed at defining the genetic programs involved in initial axon growth, developmental regrowth, and regeneration following injury. Finally, we will harness the genetic power of Drosophila to perform a comprehensive functional analysis of genes and pathways, those previously known and new ones that we will discover, in various neurite growth paradigms. Importantly, these functional assays will be performed in the same organism, allowing us to use identical genetic mutations across our analyses. To this end, our identification of a new genetic program regulating developmental axon regrowth, together with emerging tools in genomics, places us in a unique position to gain a broad understanding of axon growth during development and following injury.
Max ERC Funding
2 000 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CANALOHMICS
Project Biophysical networks underlying the robustness of neuronal excitability
Researcher (PI) Jean-Marc Goaillard
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Country France
Call Details Consolidator Grant (CoG), LS5, ERC-2013-CoG
Summary The mammalian nervous system is in some respect surprisingly robust to perturbations, as suggested by the virtually complete recovery of brain function after strokes or the pre-clinical asymptomatic phase of Parkinson’s disease. Ultimately though, cognitive and behavioral robustness relies on the ability of single neurons to cope with perturbations, and in particular to maintain a constant and reliable transfer of information.
So far, the main facet of robustness that has been studied at the neuronal level is homeostatic plasticity of electrical activity, which refers to the ability of neurons to stabilize their activity level in response to external perturbations. But neurons are also able to maintain their function when one of the major ion channels underlying their activity is deleted or mutated: the number of ion channel subtypes expressed by most excitable cells by far exceeds the minimal number of components necessary to achieve function, offering great potential for compensation when one of the channel’s function is altered. How ion channels are dynamically co-regulated to maintain the appropriate pattern of activity has yet to be determined.
In the current project, we will develop a systems-level approach to robustness of neuronal activity based on the combination of electrophysiology, microfluidic single-cell qPCR and computational modeling. We propose to i) characterize the electrical phenotype of dopaminergic neurons following different types of perturbations (ion channel KO, chronic pharmacological treatment), ii) measure the quantitatives changes in ion channel transcriptome (40 voltage-dependent ion channels) associated with these perturbations and iii) determine the mathematical relationships between quantitative changes in ion channel expression and electrical phenotype. Although focused on dopaminergic neurons, this project will provide a general framework that could be applied to any type of excitable cell to decipher its code of robustness.
Summary
The mammalian nervous system is in some respect surprisingly robust to perturbations, as suggested by the virtually complete recovery of brain function after strokes or the pre-clinical asymptomatic phase of Parkinson’s disease. Ultimately though, cognitive and behavioral robustness relies on the ability of single neurons to cope with perturbations, and in particular to maintain a constant and reliable transfer of information.
So far, the main facet of robustness that has been studied at the neuronal level is homeostatic plasticity of electrical activity, which refers to the ability of neurons to stabilize their activity level in response to external perturbations. But neurons are also able to maintain their function when one of the major ion channels underlying their activity is deleted or mutated: the number of ion channel subtypes expressed by most excitable cells by far exceeds the minimal number of components necessary to achieve function, offering great potential for compensation when one of the channel’s function is altered. How ion channels are dynamically co-regulated to maintain the appropriate pattern of activity has yet to be determined.
In the current project, we will develop a systems-level approach to robustness of neuronal activity based on the combination of electrophysiology, microfluidic single-cell qPCR and computational modeling. We propose to i) characterize the electrical phenotype of dopaminergic neurons following different types of perturbations (ion channel KO, chronic pharmacological treatment), ii) measure the quantitatives changes in ion channel transcriptome (40 voltage-dependent ion channels) associated with these perturbations and iii) determine the mathematical relationships between quantitative changes in ion channel expression and electrical phenotype. Although focused on dopaminergic neurons, this project will provide a general framework that could be applied to any type of excitable cell to decipher its code of robustness.
Max ERC Funding
1 972 797 €
Duration
Start date: 2014-05-01, End date: 2019-04-30