Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BALANCE
Project Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions
Researcher (PI) Peter CHEN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Summary
We use IR spectroscopy of trapped ions in a cryogenic FT-ICR spectrometer to probe non-covalent, “dispersion” interactions in large, gas-phase molecular ions. We will measure conformational equilibria by N-H frequency shifts, and correlate gas-phase IR frequency to the N-H-N bond angle in an ionic H-bond. Substituents on “onium” cations can adopt various conformations, whose energies map interaction potentials. Substituents on their proton-bound dimers interact non-covalently through dispersion forces, whose quantitative evaluation in large molecules has remained difficult despite dispersion becoming increasingly cited as a design principle in the construction of catalysts and materials. The non-covalent interactions bend the N-H-N bond, leading to large shifts in the IR frequency. The proton-bound dimer acts like a molecular balance where the non-covalent interaction, is set against the bending potential in an ionic hydrogen bond. Despite encouragingly accurate calculations for small molecules, experimental benchmarks for large molecules in the gas phase remain scarce, and there is evidence that the good results for small molecules may not extrapolate reliably to large molecules. The present proposal introduces a new experimental probe of non-covalent interactions, providing a sensitive test of the diverging results coming from various computational methods and other experiments. The experiment must be done on isolated molecules in the gas phase, as previous work has shown that solvation substantially cancels out the attractive potential. Accordingly, the proposed experimental design, which involves a custom-built spectrometer, newly available tunable IR sources, chemical synthesis of custom substrates, and quantum calculations up to coupled-cluster levels of theory, showcases how an interdisciplinary approach combining physical and organic chemistry can solve a fundamental problem that impacts how we understand steric effects in organic chemistry.
Max ERC Funding
2 446 125 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BATNMR
Project Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries
Researcher (PI) Clare GREY
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Summary
The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries.
New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.
This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).
Max ERC Funding
3 498 219 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym BIOSPACE
Project Monitoring Biodiversity from Space
Researcher (PI) Andrew Kerr Skidmore
Host Institution (HI) UNIVERSITEIT TWENTE
Country Netherlands
Call Details Advanced Grant (AdG), SH2, ERC-2018-ADG
Summary Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.
Summary
Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.
Max ERC Funding
2 470 315 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BIOVIB
Project Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes
Researcher (PI) Thomas ELSAESSER
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Country Germany
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.
Summary
Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.
Max ERC Funding
2 330 493 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CASCAT
Project Catalytic cascade reactions. From fundamentals of nanozymes to applications based on gas-diffusion electrodes
Researcher (PI) Wolfgang Werner SCHUHMANN
Host Institution (HI) RUHR-UNIVERSITAET BOCHUM
Country Germany
Call Details Advanced Grant (AdG), PE4, ERC-2018-ADG
Summary Nanoparticles with etched substrate channels are proposed as a simplified enzyme mimic, nanozymes, for electrocatalysis providing concave catalytically active sites together with the local modulation of electrolyte composition. This concept will be extended to bimetallic core-shell structures with etched channels to provide locally confined catalyst surfaces with varying selectivity. The first catalytic reaction at the channel entrance selectively generates a product, which is further converted in a follow-up reaction catalysed at the core material at the bottom of the channel. The endeavour to locally assemble catalysts with different properties in nano-confined reaction volumes to actualise cascade reaction pathways will be extended to layered nanoparticle structures. Together with an anisotropic provision of a gaseous reactant through a hydrophobic/hydrophilic phase boundary of specifically designed gas diffusion electrodes multi-step catalytic cascade reactions become feasible. The development and extensive evaluation of multi-catalyst gas-diffusion electrodes using operando electrochemistry/spectroscopy and nano-electrochemical tools as well as multi flow-through electrolysers will provide the fundamental knowledge concerning the relative location of different catalyst particles, which synergistically perform chemical cascade reaction with high selectivity and at high current densities. These gas-diffusion electrodes will be integrated in novel electrolyser concepts targeting CO2 recycling at high current density in alkaline solution under suppression of H2 competition with previously unprecedented selectivity for the formation of higher hydrocarbons envisioning contributions to a closed carbon cycle economy and a substantial decrease of CO2 emission. Additionally, a novel tree-type rotating electrolyser design is proposed for the removal of hazardous gaseous pollutants from air e.g. at street crossings in cities as exemplified by NOx reduction to N2 or NH3.
Summary
Nanoparticles with etched substrate channels are proposed as a simplified enzyme mimic, nanozymes, for electrocatalysis providing concave catalytically active sites together with the local modulation of electrolyte composition. This concept will be extended to bimetallic core-shell structures with etched channels to provide locally confined catalyst surfaces with varying selectivity. The first catalytic reaction at the channel entrance selectively generates a product, which is further converted in a follow-up reaction catalysed at the core material at the bottom of the channel. The endeavour to locally assemble catalysts with different properties in nano-confined reaction volumes to actualise cascade reaction pathways will be extended to layered nanoparticle structures. Together with an anisotropic provision of a gaseous reactant through a hydrophobic/hydrophilic phase boundary of specifically designed gas diffusion electrodes multi-step catalytic cascade reactions become feasible. The development and extensive evaluation of multi-catalyst gas-diffusion electrodes using operando electrochemistry/spectroscopy and nano-electrochemical tools as well as multi flow-through electrolysers will provide the fundamental knowledge concerning the relative location of different catalyst particles, which synergistically perform chemical cascade reaction with high selectivity and at high current densities. These gas-diffusion electrodes will be integrated in novel electrolyser concepts targeting CO2 recycling at high current density in alkaline solution under suppression of H2 competition with previously unprecedented selectivity for the formation of higher hydrocarbons envisioning contributions to a closed carbon cycle economy and a substantial decrease of CO2 emission. Additionally, a novel tree-type rotating electrolyser design is proposed for the removal of hazardous gaseous pollutants from air e.g. at street crossings in cities as exemplified by NOx reduction to N2 or NH3.
Max ERC Funding
2 499 462 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ChemNav
Project Magnetic sensing by molecules, birds, and devices
Researcher (PI) Peter John Hore
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary The sensory mechanisms that allow birds to perceive the direction of the Earth’s magnetic field for the purpose of navigation are only now beginning to be understood. One of the two leading hypotheses is founded on magnetically sensitive photochemical reactions in the retina. It is thought that transient photo-induced radical pairs in cryptochrome, a blue-light photoreceptor protein, act as the primary magnetic sensor. Experimental and theoretical support for this mechanism has been accumulating over the last few years, qualifying chemical magnetoreception for a place in the emerging field of Quantum Biology.
In this proposal, we aim to determine the detailed principles of efficient chemical sensing of weak magnetic fields, to elucidate the biophysics of animal compass magnetoreception, and to explore the possibilities of magnetic sensing technologies inspired by the coherent dynamics of entangled electron spins in cryptochrome-based radical pairs.
We will:
(a) Establish the fundamental structural, kinetic, dynamic and magnetic properties that allow efficient chemical sensing of Earth-strength magnetic fields in cryptochromes.
(b) Devise new, sensitive forms of optical spectroscopy for this purpose.
(c) Design, construct and iteratively refine non-natural proteins (maquettes) as versatile model systems for testing and optimising molecular magnetoreceptors.
(d) Characterise the spin dynamics and magnetic sensitivity of maquette magnetoreceptors using specialised magnetic resonance and optical spectroscopic techniques.
(e) Develop efficient and accurate methods for simulating the coherent spin dynamics of realistic radical pairs in order to interpret experimental data, guide the implementation of new experiments, test concepts of magnetoreceptor function, and guide the design of efficient sensors.
(f) Explore the feasibility of electronically addressable, organic semiconductor sensors inspired by radical pair magnetoreception.
Summary
The sensory mechanisms that allow birds to perceive the direction of the Earth’s magnetic field for the purpose of navigation are only now beginning to be understood. One of the two leading hypotheses is founded on magnetically sensitive photochemical reactions in the retina. It is thought that transient photo-induced radical pairs in cryptochrome, a blue-light photoreceptor protein, act as the primary magnetic sensor. Experimental and theoretical support for this mechanism has been accumulating over the last few years, qualifying chemical magnetoreception for a place in the emerging field of Quantum Biology.
In this proposal, we aim to determine the detailed principles of efficient chemical sensing of weak magnetic fields, to elucidate the biophysics of animal compass magnetoreception, and to explore the possibilities of magnetic sensing technologies inspired by the coherent dynamics of entangled electron spins in cryptochrome-based radical pairs.
We will:
(a) Establish the fundamental structural, kinetic, dynamic and magnetic properties that allow efficient chemical sensing of Earth-strength magnetic fields in cryptochromes.
(b) Devise new, sensitive forms of optical spectroscopy for this purpose.
(c) Design, construct and iteratively refine non-natural proteins (maquettes) as versatile model systems for testing and optimising molecular magnetoreceptors.
(d) Characterise the spin dynamics and magnetic sensitivity of maquette magnetoreceptors using specialised magnetic resonance and optical spectroscopic techniques.
(e) Develop efficient and accurate methods for simulating the coherent spin dynamics of realistic radical pairs in order to interpret experimental data, guide the implementation of new experiments, test concepts of magnetoreceptor function, and guide the design of efficient sensors.
(f) Explore the feasibility of electronically addressable, organic semiconductor sensors inspired by radical pair magnetoreception.
Max ERC Funding
2 997 062 €
Duration
Start date: 2013-12-01, End date: 2018-11-30
Project acronym ChinaUrban
Project Rethinking China’s Model of Urban Governance
Researcher (PI) Fulong WU
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Country United Kingdom
Call Details Advanced Grant (AdG), SH2, ERC-2018-ADG
Summary China’s phenomenal urbanisation is of world-historical significance and imposes profound theoretical and policy challenges. This ground-breaking project will rethink China’s model of urban governance through grounded and multi-scalar investigations ranging from neighbourhoods and cities to regions. For neighbourhoods, it unravels the interface between state and society in everyday living space, migrant social agencies and the self-governance of homeowners’ associations under urbanisation and housing marketization. For cities, it interrogates the development strategies and governance of migrant and ecological urbanism as well as the implementation of projects through financial instruments and the land market. For regions, it uncovers entangled state–market relations which redistribute population and economic activities across cities and produce the city-region. The research will be conducted through six cases: Shanghai, Wuhan, Dali, Xiongan, Jing-Jin-Ji (Beijing-Tianjin-Hebei), and the Guangdong–Hong Kong–Macau Greater Bay Area, based upon grounded ethnographic observations, in-depth interviews and close engagement with Chinese researchers and policy makers across different types of neighbourhoods and cities of varying sizes in coastal, central and western regions, and recent national strategic projects. The project is timely for China to implement a UN-endorsed new urban agenda and rethink its model in the face of trade tensions. It will change how we think of China and its governance and be the first of its kind to explicitly consider indigenous perspectives on Chinese urban transformation. This innovative and contextually sensitive research will contribute to entrepreneurial urban governance theories and will offer a theoretically nuanced and grounded explanation of state entrepreneurialism in China, with six workshops organised within China as integral parts of knowledge production as well as a series of publication outputs.
Summary
China’s phenomenal urbanisation is of world-historical significance and imposes profound theoretical and policy challenges. This ground-breaking project will rethink China’s model of urban governance through grounded and multi-scalar investigations ranging from neighbourhoods and cities to regions. For neighbourhoods, it unravels the interface between state and society in everyday living space, migrant social agencies and the self-governance of homeowners’ associations under urbanisation and housing marketization. For cities, it interrogates the development strategies and governance of migrant and ecological urbanism as well as the implementation of projects through financial instruments and the land market. For regions, it uncovers entangled state–market relations which redistribute population and economic activities across cities and produce the city-region. The research will be conducted through six cases: Shanghai, Wuhan, Dali, Xiongan, Jing-Jin-Ji (Beijing-Tianjin-Hebei), and the Guangdong–Hong Kong–Macau Greater Bay Area, based upon grounded ethnographic observations, in-depth interviews and close engagement with Chinese researchers and policy makers across different types of neighbourhoods and cities of varying sizes in coastal, central and western regions, and recent national strategic projects. The project is timely for China to implement a UN-endorsed new urban agenda and rethink its model in the face of trade tensions. It will change how we think of China and its governance and be the first of its kind to explicitly consider indigenous perspectives on Chinese urban transformation. This innovative and contextually sensitive research will contribute to entrepreneurial urban governance theories and will offer a theoretically nuanced and grounded explanation of state entrepreneurialism in China, with six workshops organised within China as integral parts of knowledge production as well as a series of publication outputs.
Max ERC Funding
2 492 786 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CISS
Project Chiral Induced Spin Selectivity
Researcher (PI) Ron Naaman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Country Israel
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary The overall objective is to fully understand the Chiral Induced Spin Selectivity (CISS) effect, which was discovered recently. It was found that the transmission or conduction of electrons through chiral molecules is spin dependent. The CISS effect is a change in the pradigm that assumed that any spin manipulation requiers magnetic materials or materials with high spin-orbit coupling. These unexpected new findings open new possibilities for applying chiral molecules in spintronics applications and may provide new insights on electron transfer processes in Biology.
The specific goals of the proposed research are
(i) To establish the parameters that affect the magnitude of the CISS effect.
(ii) To demonstrate spintronics devices (memory and transistors) that are based on the CISS effect.
(iii) To investigate the role of CISS in electron transfer in biology related systems.
The experiments will be performed applying a combination of experimental methods including photoelectron spectroscopy, single molecule conduction, light-induced electron transfer, and spin specific conduction through magneto-electric devices.
The project has a potential to have very large impact on various fields from Physics to Biology. It will result in the establishment of chiral organic molecules as a new substrate for wide range of spintronics related applications including magnetic memory, and in determining whether spins play a role in electron transfer processes in biology.
Summary
The overall objective is to fully understand the Chiral Induced Spin Selectivity (CISS) effect, which was discovered recently. It was found that the transmission or conduction of electrons through chiral molecules is spin dependent. The CISS effect is a change in the pradigm that assumed that any spin manipulation requiers magnetic materials or materials with high spin-orbit coupling. These unexpected new findings open new possibilities for applying chiral molecules in spintronics applications and may provide new insights on electron transfer processes in Biology.
The specific goals of the proposed research are
(i) To establish the parameters that affect the magnitude of the CISS effect.
(ii) To demonstrate spintronics devices (memory and transistors) that are based on the CISS effect.
(iii) To investigate the role of CISS in electron transfer in biology related systems.
The experiments will be performed applying a combination of experimental methods including photoelectron spectroscopy, single molecule conduction, light-induced electron transfer, and spin specific conduction through magneto-electric devices.
The project has a potential to have very large impact on various fields from Physics to Biology. It will result in the establishment of chiral organic molecules as a new substrate for wide range of spintronics related applications including magnetic memory, and in determining whether spins play a role in electron transfer processes in biology.
Max ERC Funding
2 499 998 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym CoCi
Project Co-Evolving City Life
Researcher (PI) Dirk HELBING
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Country Switzerland
Call Details Advanced Grant (AdG), SH2, ERC-2018-ADG
Summary How could networks of innovative cities contribute to the solution of humanity’s existential problems? Given the on-going digital revolution and our present-day sustainability challenges, we have to reinvent the way cities are operated. We propose that the requirement of organizing cities in a more resilient way implies the need for more decentralized solutions, based on digitally assisted self-organization, and that this concept is also compatible with sustainability requirements and stronger democratic participation. The CoCi proposal will investigate, whether such a decentralized, participatory approach could compete with a fully centralized approach in terms of efficiency and sustainability, or perform even better than that. This requires in particular to figure out, how distributed co-creation processes can be coordinated and lifted to a professional level in a scalable way. The main questions of the CoCi proposal are: How could more participatory smart cities work, and how can they meet the requirements of being more efficient, sustainable and resilient? What are their risks and benefits compared with centralized approaches? How could digital societies fitting our culture, for example, based on values such as freedom, equality and solidarity (liberté, égalité, fraternité) look like, and what performance can be expected from them? The CoCi proposal brings together two research directions: first, the automation of mobility solutions based on the Internet of Things and Machine Learning approaches, as they have been pursued within the “smart cities” paradigm and, second, novel collaborative approaches as they have been recently discussed under labels such as participatory resilience, digital democracy, City Olympics, open source urbanism, and the “socio-ecological finance system”.
Summary
How could networks of innovative cities contribute to the solution of humanity’s existential problems? Given the on-going digital revolution and our present-day sustainability challenges, we have to reinvent the way cities are operated. We propose that the requirement of organizing cities in a more resilient way implies the need for more decentralized solutions, based on digitally assisted self-organization, and that this concept is also compatible with sustainability requirements and stronger democratic participation. The CoCi proposal will investigate, whether such a decentralized, participatory approach could compete with a fully centralized approach in terms of efficiency and sustainability, or perform even better than that. This requires in particular to figure out, how distributed co-creation processes can be coordinated and lifted to a professional level in a scalable way. The main questions of the CoCi proposal are: How could more participatory smart cities work, and how can they meet the requirements of being more efficient, sustainable and resilient? What are their risks and benefits compared with centralized approaches? How could digital societies fitting our culture, for example, based on values such as freedom, equality and solidarity (liberté, égalité, fraternité) look like, and what performance can be expected from them? The CoCi proposal brings together two research directions: first, the automation of mobility solutions based on the Internet of Things and Machine Learning approaches, as they have been pursued within the “smart cities” paradigm and, second, novel collaborative approaches as they have been recently discussed under labels such as participatory resilience, digital democracy, City Olympics, open source urbanism, and the “socio-ecological finance system”.
Max ERC Funding
2 499 500 €
Duration
Start date: 2020-10-01, End date: 2025-09-30